Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration (eBook)

AI and Its Application to Complex Industrial Processes
eBook Download: EPUB
2025
940 Seiten
Wiley-IEEE Press (Verlag)
978-1-394-35402-3 (ISBN)

Lese- und Medienproben

A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration - Jiang Tang, Wen Yu, Junfei Qiao
Systemvoraussetzungen
119,99 inkl. MwSt
(CHF 117,20)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

An expert discussion of intelligent optimization control in complex industrial processes

In A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration: AI and Its Application to Complex Industrial Processes, a team of distinguished researchers delivers an innovative new approach to integrating virtual mechanism data generated through coupled numerical simulation and orthogonal experimental design with real historical data. The book explains how to create a heterogenous ensemble prediction model for carbon monoxide emissions in municipal solid waste incineration (MSWI) processes.

The authors focus on intelligent optimization control of MSWI processes based on hardware-in-loop DT platforms. They demonstrate AI-driven modeling, control, optimization algorithms in real-world applications, including virtual-real data hybrid-driven deep modeling and intelligent optimal controls based on multiple objectives.

Additional topics include:

  • A thorough introduction to numerical simulation modeling of whole industrial processes
  • Comprehensive explorations of the design, implementation, and validation of hardware-in-loop digital twin platforms
  • Practical discussions of AI-driven modeling, control, and optimization
  • Fulsome descriptions of the skills required to address challenges posed by complex industrial processes

Perfect for environmental engineers and researchers, A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration will also benefit MSWI plant operators and managers, as well as AI and machine learning researchers and developers of environmental monitoring and control systems.

Jian Tang, PhD, is a Professor and Researcher with the Department of Artificial Intelligence and Automation in the Faculty of Information Technology at the Beijing University of Technology.

Wen Yu, PhD, is a Professor and Head of Department of the Departamento de Control Automatico at CINVESTAV-IPN (National Polytechnic Institute) in Mexico City, Mexico.

Junfei Qiao, PhD, is a Professor with the Beijing University of Technology and Director of Beijing Laboratory of Smart Environmental Protection in Beijing, China.


An expert discussion of intelligent optimization control in complex industrial processes In A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration: AI and Its Application to Complex Industrial Processes, a team of distinguished researchers delivers an innovative new approach to integrating virtual mechanism data generated through coupled numerical simulation and orthogonal experimental design with real historical data. The book explains how to create a heterogenous ensemble prediction model for carbon monoxide emissions in municipal solid waste incineration (MSWI) processes. The authors focus on intelligent optimization control of MSWI processes based on hardware-in-loop DT platforms. They demonstrate AI-driven modeling, control, optimization algorithms in real-world applications, including virtual-real data hybrid-driven deep modeling and intelligent optimal controls based on multiple objectives. Additional topics include: A thorough introduction to numerical simulation modeling of whole industrial processesComprehensive explorations of the design, implementation, and validation of hardware-in-loop digital twin platformsPractical discussions of AI-driven modeling, control, and optimizationFulsome descriptions of the skills required to address challenges posed by complex industrial processes Perfect for environmental engineers and researchers, A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration will also benefit MSWI plant operators and managers, as well as AI and machine learning researchers and developers of environmental monitoring and control systems.

List of Figures


Figure 1.1 Process flow of a grate‐type MSWI plant in Beijing
Figure 1.2 MSW components ratios of different countries/regions
Figure 1.3 Schematic diagram of manual control mode in the MSWI process in China
Figure 1.4 Schematic diagram of operation optimization process in complex process industries
Figure 1.5 Requirements and relationships in academic research and industrial applications
Figure 1.6 Relationship between the incineration mechanism, the actual MSWI process, human brain cognitive theory, numerical simulation challenges, and DT model construction
Figure 1.7 Structure of “Real–Real” simulation platform
Figure 1.8 Structure of “Real–Virtual” simulation platform
Figure 1.9 Structure of “Virtual–Real” simulation platform
Figure 1.10 Structure of “Virtual–Virtual” simulation platform
Figure 1.11 The book's structure
Figure 2.1 Process flows of MSWI plants with a daily processing capacity of 800 tons
Figure 2.2 Internal structure and zoning diagram of mechanical grate furnace
Figure 2.3 Diagram of flue gas cleaning process
Figure 2.4 Solid‐phase combustion zone and gas‐phase combustion zone for nitrogen element products
Figure 2.5 Schematic diagram of NxOy generation in high‐temperature combustion area
Figure 2.6 Numerical simulation and modeling analysis framework
Figure 2.7 Simulation modeling strategy for MSWI whole process
Figure 2.8 Multi‐software‐coupled whole‐process numerical simulation strategy under benchmark conditions
Figure 2.9 Incinerator simplified structure (left side), its 2D model (middle), and mesh division (right side)
Figure 2.10 Non‐grate solid‐phase combustion simulated by Aspen Plus
Figure 2.11 Combustion results of solid MSW on the grate. (a) Rate; (b) Mass fraction
Figure 2.12 Combustion results of gas‐phase combustion under benchmark conditions: (a) temperature, (b) O2 mass fraction, and (c) CO2 mass fraction
Figure 2.13 Temperature distribution in the incinerator under typical. (a–h) Case 1–Case 8
Figure 2.14 O2 distribution in the incinerator under typical. (a–h) Case 1–Case 8
Figure 2.15 CO2 distribution in the incinerator under typical. (a–h) Case 1–Case 8
Figure 2.16 Probability density of temperature in the incinerator under typical. (a–h) Case 1–Case 8
Figure 2.17 Exhaust emission results obtained from the simulation: (a) CO, (b) CO2, (c) O2, (d) SO2, and (e) NOx
Figure 2.18 Single factor analysis curve in terms of feed rate based on MIMO‐LRDT mechanism model. (a) CO concentration; (b) CO2 concentration; (c) O2 concentration; (d) SO2 concentration; (e) NOx concentration
Figure 2.19 Single factor analysis curve in terms of primary air temperature based on MIMO‐LRDT mechanism model. (a) CO concentration; (b) CO2 concentration; (c) O2 concentration; (d) SO2 concentration; (e) NOx concentration
Figure 2.20 Dual‐factor analysis curve based on MIMO‐LRDT mechanism model. (a) Grate speed vs Feed rate; (b) Grate speed vs Primary air temperature
Figure 3.1 Strategy diagram of the proposed virtual data and real data hybrid‐driven modeling approach
Figure 3.2 Aspen Plus model diagram
Figure 3.3 Structure diagram of MISO LRDT model
Figure 3.4 LSTM structure diagram
Figure 3.5 Impact of three inputs on CO under multi‐operating conditions
Figure 3.6 Prediction curves of different models based on virtual mechanism data
Figure 3.7 Prediction curves of different models based on real data
Figure 3.8 Prediction curves of different models for offline training verification phase
Figure 3.9 Prediction curves of the offline training verification phase
Figure 3.10 Prediction curves of different models for the online testing verification phase
Figure 3.11 Prediction curves of online testing verification phase
Figure 3.12 Relationship between the hyperparameter and R2 indicator
Figure 4.1 DXN generation mode during MSW combustion process
Figure 4.2 DXN generation mode after MSW combustion process
Figure 4.3 Schematic diagram of the generation mechanism and temperature range of DXN
Figure 4.4 SEN modeling strategy based on Bayesian inference and binary tree
Figure 4.5 Schematic diagram of BT candidate submodels construction
Figure 4.6 Prediction curves of the candidate submodels for the benchmark datasets
Figure 4.7 Posterior information of the candidate submodels for the benchmark datasets
Figure 4.8 Posterior information of the selected ensemble submodels for the benchmark datasets
Figure 4.9 Fitting curves of the SEN model for the benchmark datasets
Figure 4.10 Posterior information of the SEN model for the DXN dataset
Figure 4.11 Posterior information of the selected ensemble submodels for the DXN dataset
Figure 4.12 Fitting curves of the DXN dataset
Figure 4.13 Hyperparameter sensitivity analysis curves of the BBTSEN model
Figure 5.1 Semi‐supervised RF optimization strategy for DXN emission soft sensing
Figure 5.2 Schematic of the parameter coding design for the semi‐supervised RF optimization
Figure 5.3 Particle decoding schematic for the semi‐supervised RF optimization strategy
Figure 5.4 Modeling results after CCS dataset optimization for the semi‐supervised RF optimization strategy
Figure 5.5 Prediction curve of the testing set on the CCS data for the semi‐supervised RF optimization strategy
Figure 5.6 Modeling results of the DXN dataset for the semi‐supervised RF optimization strategy
Figure 5.7 Prediction curve of the testing set on the DXN data for the semi‐supervised RF optimization strategy
Figure 5.8 Relationship between the hyperparameters and RMSE in the CCS original dataset for the semi‐supervised RF optimization strategy
Figure 5.9 Relationship between the hyperparameters and RMSE in the CCS mixed dataset for the semi‐supervised RF optimization strategy
Figure 5.10 Relationship between the hyperparameters and RMSE in the DXN original dataset for the...

Erscheint lt. Verlag 5.11.2025
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Intelligence • Digital Twin (DT) • ensemble learning • hybrid data-driven • Industrial Control • industrial modeling • Industrial Optimization • municipal solid waste incineration (MSWI) • numerical simulation • Semi-Supervised Learning
ISBN-10 1-394-35402-9 / 1394354029
ISBN-13 978-1-394-35402-3 / 9781394354023
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Auf der Suche nach dem Gleichgewicht

von Karl-Eugen Kurrer

eBook Download (2025)
Ernst & Sohn (Verlag)
CHF 119,95
Schwerpunkte: Bauen im Bestand; nichtmetallische Bewehrungen

von Konrad Bergmeister; Frank Fingerloos …

eBook Download (2025)
Ernst & Sohn (Verlag)
CHF 159,95
Mobilität im Umbruch

von Oliver Schwedes; Marcus Keichel

eBook Download (2025)
Springer Vieweg (Verlag)
CHF 78,15