Deep Learning (eBook)
250 Seiten
Elsevier Science (Verlag)
978-0-443-43955-1 (ISBN)
Dr Shuhao Wang received his from Tsinghua University; he is a fellow at the Institute for Interdisciplinary Information Sciences at Tsinghua University and is currently the co-founder and CTO of 'Thorough Future.' He has conducted research on data science and artificial intelligence at Baidu, NovuMind, and JD.com. He holds over 20 national patents. Dr. Wang has received several key accolades, such as the '30 New Generation Digital Economy Talents' award at the 2019 Wuzhen Internet Summit and the Year 2022 Fall Asia-Pacific Signal and Information Processing Association Industrial Distinguished Leaders award, and was named one of Alibaba Cloud's 'Seeing New Power' figures of 2022
Deep Learning: From Algorithmic Essence to Industrial Practice introduces the fundamental theories of deep learning, engineering practices, and their deployment and application in the industry. This book provides a detailed explanation of classic convolutional neural networks, recurrent neural networks, and transformer networks based on self-attention mechanisms, along with their variants, combining code demonstrations. Additionally, this book covers the applications of these models in areas including image classification, object detection, and semantic segmentation. This book also considers advancements in deep reinforcement learning and generative adversarial networks making it suitable for graduate and senior undergraduate students with backgrounds in computer science, automation, electronics, communications, mathematics, and physics, as well as professional technical personnel who wish to work or are preparing to transition into the field of artificial intelligenceThe code for book may be accessed by visiting the companion website: https://www.elsevier.com/books-and-journals/book-companion/9780443439544- Provides in-depth explanations and practical code examples for the latest deep learning architectures, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers- Examines theoretical concepts and the engineering practices required for deploying deep learning models in real-world scenarios- Covers the use of distributed systems for training and deploying models- Includes detailed case studies and applications of deep learning models in various domains including image classification, object detection, and semantic segmentation
| Erscheint lt. Verlag | 25.7.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Bauwesen |
| ISBN-10 | 0-443-43955-9 / 0443439559 |
| ISBN-13 | 978-0-443-43955-1 / 9780443439551 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich