Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems (eBook)
268 Seiten
Wiley-IEEE Press (Verlag)
978-1-394-25529-0 (ISBN)
Comprehensive treatment of several representative flexible systems, ranging from dynamic modeling and intelligent control design through to stability analysis
Fully illustrated throughout, Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems proposes high-efficiency modeling methods and novel intelligent control strategies for several representative flexible systems developed by means of neural networks. It discusses tracking control of multi-link flexible manipulators, vibration control of flexible buildings under natural disasters, and fault-tolerant control of bionic flexible flapping-wing aircraft and addresses common challenges like external disturbances, dynamic uncertainties, output constraints, and actuator faults.
Expanding on its theoretical deliberations, the book includes many case studies demonstrating how the proposed approaches work in practice. Experimental investigations are carried out on Quanser Rotary Flexible Link, Quanser 2 DOF Serial Flexible Link, Quanser Active Mass Damper, and Quanser Smart Structure platforms.
The book starts by providing an overview of dynamic modeling and intelligent control of flexible systems, introducing several important issues, along with modeling and control methods of three typical flexible systems. Other topics include:
- Foundational mathematical preliminaries including the Hamilton principle, model discretization methods, Lagrange's equation method, and Lyapunov's stability theorem
- Dynamic modeling of a single-link flexible robotic manipulator and vibration control design for a string with the boundary time-varying output constraint
- Unknown time-varying disturbances, such as earthquakes and strong winds, and how to suppress them and use MATLAB and Quanser to verify effectiveness of a proposed control
- Adaptive vibration control methods for a single-floor building-like structure equipped with an active mass damper (AMD)
Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems is an invaluable resource for researchers and engineers seeking high-efficiency modeling methods and neural-network-based control solutions for flexible systems, along with industry engineers and researchers who are interested in control theory and applications and students in related programs of study.
Hejia Gao, PhD, is an Associate Professor at the School of Artificial Intelligence, Anhui University, Hefei, China. Previously, she was a Visiting Researcher at the Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Canada. She has published over 30 international journal and conference papers. Her research interests include neural networks, reinforcement learning, flexible systems, and vibration control.
Wei He, PhD, is a Full Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing, China. He has co-authored three books and published over 100 international journal and conference papers. He was awarded a Newton Advanced Fellowship from the Royal Society, UK, in 2017. His research interests include adaptive control, vibration control, and bionic flapping wing aircraft.
Changyin Sun, PhD, is a Professor at the School of Automation, Southeast University, Nanjing, China. He has co-authored four books and published over 160 international journal papers. Prof. Sun is a Chinese Association of Automation Fellow. His research interests include intelligent control, flight control, pattern recognition, and optimal theory.
Comprehensive treatment of several representative flexible systems, ranging from dynamic modeling and intelligent control design through to stability analysis Fully illustrated throughout, Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems proposes high-efficiency modeling methods and novel intelligent control strategies for several representative flexible systems developed by means of neural networks. It discusses tracking control of multi-link flexible manipulators, vibration control of flexible buildings under natural disasters, and fault-tolerant control of bionic flexible flapping-wing aircraft and addresses common challenges like external disturbances, dynamic uncertainties, output constraints, and actuator faults. Expanding on its theoretical deliberations, the book includes many case studies demonstrating how the proposed approaches work in practice. Experimental investigations are carried out on Quanser Rotary Flexible Link, Quanser 2 DOF Serial Flexible Link, Quanser Active Mass Damper, and Quanser Smart Structure platforms. The book starts by providing an overview of dynamic modeling and intelligent control of flexible systems, introducing several important issues, along with modeling and control methods of three typical flexible systems. Other topics include: Foundational mathematical preliminaries including the Hamilton principle, model discretization methods, Lagrange s equation method, and Lyapunov s stability theoremDynamic modeling of a single-link flexible robotic manipulator and vibration control design for a string with the boundary time-varying output constraintUnknown time-varying disturbances, such as earthquakes and strong winds, and how to suppress them and use MATLAB and Quanser to verify effectiveness of a proposed controlAdaptive vibration control methods for a single-floor building-like structure equipped with an active mass damper (AMD) Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems is an invaluable resource for researchers and engineers seeking high-efficiency modeling methods and neural-network-based control solutions for flexible systems, along with industry engineers and researchers who are interested in control theory and applications and students in related programs of study.
| Erscheint lt. Verlag | 27.12.2024 |
|---|---|
| Reihe/Serie | IEEE Press Series on Control Systems Theory and Applications |
| Sprache | englisch |
| Themenwelt | Technik ► Bauwesen |
| Technik ► Elektrotechnik / Energietechnik | |
| Schlagworte | active mass damper • bionic flexible flapping wing • flexible building-like structure • flexible robotic manipulator • Lyapunov's stability theorem • Model discretization methods • unknown time-varying disturbances • vibration control methods |
| ISBN-10 | 1-394-25529-2 / 1394255292 |
| ISBN-13 | 978-1-394-25529-0 / 9781394255290 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich