Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Process Systems and Materials for CO2 Capture (eBook)

Modelling, Design, Control and Integration
eBook Download: PDF
2017
John Wiley & Sons (Verlag)
978-1-119-10643-2 (ISBN)

Lese- und Medienproben

Process Systems and Materials for CO2 Capture -
Systemvoraussetzungen
215,99 inkl. MwSt
(CHF 209,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through:

  • Modeling of materials and processes based on chemical and physical principles
  • Design of materials and processes based on systematic optimization methods
  • Utilization of advanced control and integration methods in process and plant-wide operations

The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc.

Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.



Edited by
ATHANASIOS I. PAPADOPOULOS, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Greece

PANOS SEFERLIS, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece


This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: Modeling of materials and processes based on chemical and physical principles Design of materials and processes based on systematic optimization methods Utilization of advanced control and integration methods in process and plant-wide operations The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.

Edited by ATHANASIOS I. PAPADOPOULOS, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Greece PANOS SEFERLIS, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece

Title Page 5
Copyright Page 6
Contents 7
About the Editors 19
List of Contributors 21
Preface 29
Section 1 Modelling and Design of Materials 31
Chapter 1 The Development of a Molecular Systems Engineering Approach to the Design of Carbon-capture Solvents 33
1.1 Introduction 33
1.2 Predictive Thermodynamic Models for the Integrated Molecular and Process Design of Physical Absorption Processes 36
1.2.1 An Introduction to SAFT 36
1.2.2 Group Contribution (GC) Versions of SAFT 40
1.2.3 Model Development in SAFT 42
1.2.4 SAFT Models for Physical Absorption Systems 44
1.3 Describing Chemical Equilibria with SAFT 46
1.3.1 Chemical and Physical Models of Reactions 47
1.3.2 Modelling Aqueous Mixtures of Amine Solvents and CO2 51
1.4 Integrated Computer-aided Molecular and Process Design using SAFT 54
1.4.1 CAMPD of Physical Absorption Systems 55
1.4.2 CAMPD of Chemical Absorption Systems 58
1.5 Conclusions 59
List of Abbreviations 60
Acknowledgments 61
References 61
Chapter 2 Methods and Modelling for Post-combustion CO2 Capture 73
2.1 Introduction to Post-combustion CO2 Capture: The Role of Solvents and Some Engineering Challenges 73
2.1.1 The Complex Physical Chemistry of CO2 and its Mixtures 75
2.1.2 The Corrosive Nature of CO2 76
2.1.3 Which is the Best CO2 Capture Method? 76
2.1.4 Lack of Pilot Plant Data 78
2.1.5 CO2 Storage 78
2.1.6 The Fragmentation of Science and Technology 79
2.2 Extended UNIQUAC: A Successful Thermodynamic Model for CCS Applications 79
2.2.1 Equilibrium Approach 79
2.2.2 Rate-based Modelling 85
2.2.3 Rate-based Model Validation 88
2.3 CO2 Capture using Alkanolamines: Thermodynamics and Design 90
2.4 CO2 Capture using Ammonia: Thermodynamics and Design 91
2.5 New Solvents: Enzymes, Hydrates, Phase Change Solvents 92
2.5.1 Enzymes in CO2 Capture 92
2.5.2 Gas Hydrates in CO2 Capture 96
2.5.3 Phase Change Solvents 98
2.6 Pilot Plant Studies: Measurements and Modelling 99
2.7 Conclusions and Future Perspectives 99
List of Abbreviations 104
Acknowledgements 104
References 104
Chapter 3 Molecular Simulation Methods for CO2 Capture and Gas Separation with Emphasis on Ionic Liquids 109
3.1 Introduction 109
3.1.1 Importance of CO2 Capture and Gas Separation 109
3.1.2 Introduction to Ionic Liquids 110
3.1.3 How Do We Design Processes? 110
3.1.4 Brief Introduction to Molecular Simulation 111
3.1.5 Molecular Simulation of Ionic Liquids with Emphasis on CO2 Capture and Gas Separation 113
3.2 Molecular Simulation Methods for Property Calculations 113
3.3 Force Fields 115
3.3.1 Force Fields for CO2 and Other Gases 115
3.3.2 Force Fields for Ionic Liquids 116
3.4 Results and Discussion: The Case of the IOLICAP Project 117
3.4.1 Brief Description of the Project 117
3.4.2 The Role of Molecular Simulation and Modeling in IOLICAP 118
3.4.3 Force Field Development and Optimization 119
3.4.4 Property Prediction for Pure ILs 122
3.4.5 Permeability and Selectivity of Ionic Liquids to Gases 128
3.4.6 Other Applications of ILs for CO2 Capture and Separation Technology 130
3.5 Future Outlook 131
List of Abbreviations 132
Acknowledgments 133
References 133
Chapter 4 Thermodynamics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 143
4.1 Introduction 143
4.2 Model Description 144
4.2.1 Equilibrium Constant Calculations in Aspen Plus® 144
4.2.2 Activity Coefficient Calculation in Aspen Plus® 144
4.3 Sequential Regression Methodology 145
4.4 Model Regression 145
4.4.1 Amine/H2O 145
4.4.2 MDEA/H2O/CO2 148
4.4.3 PZ/H2O/CO2 Regression 150
4.4.4 MDEA/PZ/H2O/CO2 Regression 156
4.4.5 Generic MDEA/PZ Mixture 163
4.5 Conclusions 164
List of Abbreviations 164
Acknowledgements 164
References 165
Chapter 5 Kinetics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 167
5.1 Introduction 167
5.2 Methodology 168
5.2.1 Hydraulic Properties 168
5.2.2 Mass Transfer Correlations 169
5.2.3 Reactions and Reaction Rate Constants 170
5.2.4 Sensitivity Analysis 172
5.3 Results 173
5.3.1 Reaction Constants and Binary Diffusivity 173
5.3.2 Sensitivity Analysis 176
5.3.3 Generic Amines 178
5.3.4 Rate-based Stripper Modeling 179
5.4 Conclusions 180
List of Abbreviations 181
Acknowledgements 181
References 181
Chapter 6 Uncertainties in Modelling the Environmental Impact of Solvent Loss through Degradation for Amine Screening Purposes in Post-combustion CO2 Capture 183
6.1 Introduction 183
6.1.1 Solvent Loss in Amine-based PCC 185
6.1.2 Solvent Production 185
6.2 Oxidative Degradation 186
6.2.1 Conceptual Uncertainties in Experimental Procedures 186
6.2.2 Quantitative Uncertainties in Experimental Procedures 190
6.3 Environmental Impacts of Solvent Production 195
6.4 Conclusions and Outlook 197
List of Abbreviations 198
References 199
Chapter 7 Computer-aided Molecular Design of CO2 Capture Solvents and Mixtures 203
7.1 Introduction 203
7.2 Overview of Associated Literature 206
7.2.1 Systematic Approaches 206
7.2.2 Empirical Approaches 207
7.3 Optimization-based Design and Selection Approach 208
7.3.1 Underlying Rationale 208
7.3.2 Design of Pure Solvents 209
7.3.3 Screening of Solvent Mixtures 210
7.4 Implementation 213
7.4.1 Design and Selection of Pure Aqueous Amine Solvents 213
7.4.2 Selection of Amine Mixtures 215
7.5 Results and Discussion 217
7.5.1 Pure Solvents 217
7.5.2 Solvent Mixtures 222
7.6 Conclusions 226
List of Abbreviations 226
Acknowledgements 227
References 227
Chapter 8 Ionic Liquid Design for Biomass-based Tri-generation System with Carbon Capture 233
8.1 Introduction 233
8.1.1 Bio-energy and Carbon Capture and Storage (BECCS) 233
8.1.2 Ionic Liquids 234
8.2 Formulations to Design Ionic Liquid for BECCS 235
8.2.1 Input–Output Modelling for Bio-energy Production 236
8.2.2 Disjunctive Programming for Discretization of Continuous Variables 237
8.2.3 Optimal Ionic Liquid Design Formulation 238
8.3 An Illustrative Example 242
8.4 Conclusions 251
List of Abbreviations 252
Abbreviations 252
Ionic Liquids 252
Indices 252
Parameters 253
Variables 254
Greek Symbols 254
References 255
Section 2 From Materials to Process Modelling, Design and Intensification 259
Chapter 9 Multi-scale Process Systems Engineering for Carbon Capture, Utilization, and Storage: A Review 261
9.1 Introduction 261
9.2 Multi-scale Approaches for CCUS Design and Optimization 263
9.3 Hierarchical Approaches 264
9.3.1 Materials Screening 265
9.3.2 Process Simulation and Optimization 266
9.3.3 CCUS Network Optimization 267
9.4 Simultaneous Approaches 267
9.4.1 Materials Screening and Process Optimization 267
9.4.2 Materials Screening, Process Optimization, and Process Technology Selection 270
9.4.3 Multi-scale CCUS Design: Simultaneous Materials Screening, Process Optimization, and Supply Chain Optimization 271
9.5 Enabling Methods, Challenges, and Research Opportunities 272
9.5.1 Developing Reduced Order/Surrogate Models 272
9.5.2 Developing Multi-scale High-fidelity Simulation Tools 272
9.5.3 Addressing Uncertainty 272
List of Abbreviations 273
References 274
Chapter 10 Membrane System Design for CO2 Capture: From Molecular Modeling to Process Simulation 279
10.1 Introduction 279
10.2 Membranes for Gas Separation 280
10.2.1 Membrane Materials 280
10.2.2 Separation Principles 281
10.2.3 Membranes for CO2 Separation 283
10.3 Molecular Modeling of Gas Separation in Membranes 285
10.3.1 Variables Influencing Transport Properties in Molecular Modeling 285
10.3.2 Computational Models 286
10.3.3 Molecular Modeling Validation 289
10.3.4 Software and Potentials 289
10.4 Process Simulation of Membranes for CO2 Capture 290
10.4.1 Process Description and Simulation Basis 290
10.4.2 Cost Model 292
10.4.3 Criteria on Energy Consumption 295
10.4.4 Simulation Software 296
10.4.5 Process Design 296
10.4.6 Techno-economic Feasibility Analysis 300
10.4.7 Sensitivity Analysis 302
10.5 Future Perspectives 303
List of Abbreviations 304
Acknowledgments 306
References 306
Chapter 11 Post-combustion CO2 Capture by Chemical Gas–Liquid Absorption: Solvent Selection, Process Modelling, Energy Integration and Design Methods 313
11.1 Introduction 313
11.2 Solvent Influence 314
11.3 Process Modelling 316
11.3.1 Thermodynamic Equilibria Modelling 317
11.3.2 Necessity of a Rate-based Approach 317
11.3.3 Model Validation 319
11.4 Process Integration 321
11.4.1 Evaluating the Overall Energy Penalty 323
11.4.2 Integration Between the Capture Process and the Power Plant 324
11.4.3 Integration Within the Capture Process: Flow Scheme Modifications 326
11.4.4 Example of Process Comparison 329
11.5 Design Method 330
11.5.1 Economic Criterion for Design Purpose 331
11.5.2 Sensitivity Analysis 332
11.5.3 Optimization as a Systematic Design Tool 334
11.5.4 Example of Optimization Results for Five Processes 335
11.6 Conclusion 336
List of Abbreviations 338
References 338
Chapter 12 Innovative Computational Tools and Models for the Design, Optimization and Control of Carbon Capture Processes 341
12.1 Overview 341
12.2 Advanced Computational Frameworks 343
12.2.1 Framework for Optimization, Quantification of Uncertainty, and Surrogates 343
12.2.2 Advanced Process Control Framework 353
12.3 Case Study: Solid Sorbent Carbon Capture System 356
12.3.1 Process Models (BFB) 356
12.3.2 Process Topology via Superstructure and Algebraic Surrogate Models 357
12.3.3 Simulation-based Optimization with Simultaneous Heat Integration 358
12.3.4 Uncertainty Quantification 360
12.3.5 Dynamic Reduced Models from Rigorous Process Models 361
12.3.6 Advanced Process Control 362
12.4 Summary 365
Acknowledgment 368
List of Abbreviations 368
References 369
Chapter 13 Modelling and Optimization of Pressure Swing Adsorption (PSA) Processes for Post?combustion CO2 Capture from Flue Gas 373
13.1 Introduction 373
13.2 Mathematical Model Formulation 376
13.2.1 Problem Statement 376
13.2.2 Mathematical Model 377
13.2.3 Process Performance Indicators 381
13.2.4 Numerical Solution 381
13.3 PSA/VSA Simulation Case Studies 382
13.3.1 Model Validation 382
13.3.2 Parametric Analysis 385
13.4 PSA/VSA Optimization Case Study 389
13.4.1 Formulation of the Optimization Problem 389
13.4.2 Optimization Results 390
13.5 Conclusions 392
List of Abbreviations 395
Nomenclature 395
Greek letters 396
Subscripts 396
Superscripts 396
Abbreviations 396
Acknowledgements 396
References 397
Chapter 14 Joule Thomson Effect in a Two-dimensional Multi-component Radial Crossflow Hollow Fiber Membrane Applied for CO2 Capture in Natural Gas Sweetening 401
14.1 Introduction 401
14.2 Methodology 403
14.2.1 Mathematical Modeling 403
14.2.2 Simulation Methodology 410
14.2.3 Experimental Methodology 412
14.3 Results and Discussion 414
14.3.1 Validation of Simulation Model 414
14.3.2 Temperature and Membrane Permeance Profile 415
14.3.3 CO2 Residue Composition and Percentage Hydrocarbon Loss 418
14.3.4 Compressor Power and Stage Cut 420
14.3.5 Gas Processing Cost 422
14.4 Conclusion 423
List of Abbreviations 424
Acknowledgments 424
References 424
Chapter 15 The Challenge of Reducing the Size of an Absorber Using a Rotating Packed Bed 429
15.1 Motivation for Size Reduction 429
15.2 Rotating Packed Bed Technology 431
15.3 Experimental Work on CO2 Capture Using a Rotating Packed Bed 435
15.4 Modeling of CO2 Capture using a Rotating Packed Bed 439
15.5 Design of Rotating Packed Bed Absorbers and Real Work Comparison to Regular Packed Absorbers 440
15.6 Conclusions 447
List of Abbreviations 447
References 448
Section 3 Process Operation and Control 455
Chapter 16 Plantwide Design and Operation of CO2 Capture Using Chemical Absorption 457
16.1 Introduction 457
16.2 The Basic Process 458
16.3 Solvent Selection 459
16.4 Energy Consumption Targets 459
16.5 Steady-state Process Modeling 461
16.6 Conceptual Process Integration 462
16.7 Column Internals 462
16.8 Dynamic Modeling 463
16.9 Plantwide Control 464
16.10 Flexible Operation 464
16.11 Water and Amine Management 465
16.12 SOx Treatment 466
16.13 Monitoring 466
16.14 Conclusions 467
List of Abbreviations 467
References 467
Chapter 17 Multi-period Design of Carbon Capture Systems for Flexible Operation 477
17.1 Introduction 477
17.2 Evaluation of Flexible Operation 481
17.2.1 Load Following 481
17.2.2 Solvent Storage 483
17.2.3 Exhaust Gas Venting 484
17.2.4 Time-varying Solvent Regeneration 484
17.3 Scenario Comparison 487
17.4 Conclusions 489
List of Abbreviations 490
Acknowledgements 490
References 491
Chapter 18 Improved Design and Operation of Post-combustion CO2 Capture Processes with Process Modelling 493
18.1 Introduction 493
18.2 The gCCS Whole-chain System Modelling Environment 494
18.2.1 Modelling Reactive Absorption Processes 494
18.2.2 gSAFT Thermodynamics 495
18.3 Typical Process Design Considerations in a Simulation Study 497
18.3.1 Process Steam Requirements 497
18.3.2 Steam Extraction Location 497
18.3.3 Absorber Performance Factors 501
18.3.4 Solvent Selection/Design 501
18.3.5 Part?load Considerations 503
18.3.6 Extreme Weather Conditions 505
18.3.7 Process Design for Flexible Operation 506
18.3.8 Water Balance 506
18.4 Safety Considerations: Anticipating Hazards 507
18.4.1 Configuration Data 507
18.4.2 Unplanned Shut-down at Injection Site 507
18.4.3 Loss of Upstream Compression 508
18.4.4 Additional Hazards for Consideration 509
18.5 Process Operating Considerations 509
18.5.1 CO2 Capture Plant Control Systems 509
18.5.2 Start-up and Shut-down 513
18.5.3 Load-following Operations 513
18.6 Conclusions 527
List of Abbreviations 528
References 528
Chapter 19 Advanced Control Strategies for IGCC Plants with Membrane Reactors for CO2 Capture 531
19.1 Introduction 531
19.2 Modelling Approach 533
19.2.1 Simplified IGCC Model 533
19.2.2 Membrane Reactor Model 534
19.2.3 Integrated IGCC-MR Process Model 536
19.3 Design and Simulation Conditions 537
19.3.1 Simulation Setup 537
19.3.2 Control Structure and Scenarios 538
19.4 Model Predictive Control Strategies 538
19.4.1 Linear MPC Approach: DMC 539
19.4.2 Nonlinear MPC Approach 541
19.5 Closed-loop Simulation Results 542
19.6 Conclusions 548
List of Abbreviations 548
Notation 548
Subscripts 549
Acknowledgements 549
References 549
Chapter 20 An Integration Framework for CO2 Capture Processes 553
20.1 Introduction 553
20.2 Automation Framework and Syntax 555
20.3 CO2 Capture Plant Model 558
20.4 Case Studies 560
20.4.1 Controllability Analysis 560
20.4.2 Optimal Process Scheduling 563
20.4.3 Simultaneous Design and Control 567
20.5 Conclusions 570
List of Abbreviations 571
References 571
Chapter 21 Operability Analysis in Solvent-based Post-combustion CO2 Capture Plants 575
21.1 Introduction 575
21.2 Framework for the Analysis of Operability 578
21.2.1 Disturbance Rejection Analysis 578
21.2.2 Application to CO2 Capture Processes 579
21.3 Framework Implementation 582
21.3.1 Employed CO2 Capture Solvents 582
21.3.2 Employed Flowsheet Configurations 583
21.3.3 Disturbance Scenario and Problem Solution 585
21.4 Results and Discussion 586
21.4.1 Operability Analysis of CF Configuration 586
21.4.2 Operability Analysis of DSS?ICA Configuration 590
21.4.3 Economic Performance 594
21.5 Conclusions 596
List of Abbreviations 597
Acknowledgments 597
References 597
Section 4 Integrated Technologies 601
Chapter 22 Process Systems Engineering for Optimal Design and Operation of Oxycombustion 603
22.1 Introduction 603
22.2 Pressurized Oxycombustion of Coal 605
22.2.1 Optimal Design and Operation 605
22.2.2 Ideal Flexibility of Pressurized Oxycombustion 608
22.3 Membrane-based Processes 608
22.3.1 Need for Detailed Modeling 610
22.3.2 Optimal Reactor Design 611
22.3.3 Optimal Process Design 612
22.3.4 Integration with Seawater Desalination 613
22.3.5 Integration with Renewable Energy 614
22.4 Conclusions and Future Work 615
List of Abbreviations 615
Acknowledgments 615
References 616
Chapter 23 Energy Integration of Processes for Solid Looping CO2 Capture Systems 619
23.1 Introduction 619
23.2 Internal Integration for Energy Savings 622
23.2.1 Solids Preheating 622
23.2.2 Carbonator as a Heat Source 624
23.2.3 External Heat Sources 625
23.2.4 Comparative Analysis 627
23.3 External Integration for Energy Use 627
23.4 Process Symbiosis 631
23.4.1 In situ Pre-combustion Capture Technologies Integration with Ca-looping 631
23.4.2 In situ Integration of the Ca-looping Process with Industrial Cement Production 634
23.5 Final Remarks 635
List of Abbreviations 635
References 635
Chapter 24 Process Simulation of a Dual-stage Selexol Process for Pre-combustion Carbon Capture at an Integrated Gasification Combined Cycle Power Plant 639
24.1 Introduction 639
24.2 Configuration of an Absorption Process for Pre-combustion Carbon Capture 640
24.3 Solubility Model 646
24.4 Conventional Dual-stage Selexol Process 649
24.5 Unintegrated Solvent Cycle Design 654
24.6 95% Carbon Capture Efficiency 655
24.7 Conclusions 656
List of Abbreviations 657
References 657
Chapter 25 Optimized Lignite-fired Power Plants with Post-combustion CO2 Capture 659
25.1 Introduction 659
25.2 Reducing the Energy Efficiency Penalty 660
25.2.1 Steam Thermodynamic Characteristics 660
25.2.2 Lignite Pre-drying 660
25.3 Optimized Plants with Amine Scrubbing: Greenfield Case 661
25.3.1 General Assumptions 661
25.3.2 Reference Power Plant 663
25.3.3 Lignite Power Plant with Post-combustion Capture with Amine Scrubbing 663
25.4 Oxyfuel and Amine Scrubbing Hybrid CO2 Capture 665
25.4.1 Technology Description 665
25.4.2 Reference Case: Existing Plant 668
25.4.3 Plant with Hybrid CO2 Capture System 670
25.5 Conclusions 675
List of Abbreviations 675
References 675
Index 679
EULA 689

Erscheint lt. Verlag 28.3.2017
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Wirtschaft
Schlagworte calcium looping • Carbon Capture & Storage • carbon capture and storage (CCS) • chemical engineering • Chemie • Chemische Verfahrenstechnik • Chemistry • CO2 capture • Energie • Energy • Environmental Chemistry • Kohlenstoff-Abscheidung u. -Speicherung • Membrane • Modelling • Oxycoal • Post-Combustion • Pre-Combustion • Process Control • Process design • Process Engineering • Process Optimization • Prozesssteuerung • Umweltchemie
ISBN-10 1-119-10643-5 / 1119106435
ISBN-13 978-1-119-10643-2 / 9781119106432
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95