Bioenergy (eBook)
600 Seiten
Wiley-Blackwell (Verlag)
978-1-118-56836-1 (ISBN)
The search for altenative, renewable sources of fuel and energy from plants, algae, and waste materials has catalyzed in recent years. With the growing interest in bioenergy development and production there has been increasing demand for a broad ranging introductory text in the field. Bioenergy: Principles and Practices provides an invaluable introduction to the fundamentals of bioenergy feedstocks, processing, and industry.
Bioenergy provides readers with an understanding of foundational information on 1st, 2nd, and 3rd generation biofuels. Coverage spans from feedstock production of key energy sources such as grasses, canes, and woody plants through chemical conversion processes and industrial application. Each chapter provides a thorough description of fundamental concepts, definitions of key terms, case studies and practical examples and exercises.
Bioenergy: Principles and Practices will be an essential resource for students, bioengineers, chemists, and industry personnel tying key concepts of bioenergy science to valuable real world application.
Yebo Li is an Assitant Professor in the Department of Food, Agricultural, and Biological Engineering and Director of the Bioproducts and Bioengineering Laboratory at the Ohio State University.
Samir Kumar Khanal, PhD, P.E. is an Associate Professor of Bioengineering in the Bioenergy Research Group?in the Department of Molecular Biosciences and Bioengineering at the University of Hawaii-Manoa.
YEBO LI is a Professor in the Department of Food, Agricultural, and Biological Engineering at the Ohio State University. SAMIR KUMAR KHANAL is an Associate Professor in the Department of Molecular Biosciences and Bioengineering at the University of Hawai'i at Manoa.
Title Page 5
Copyright Page 6
Contents 7
List of Contributors 21
Preface 25
Acknowledgments 27
About the Companion Website 29
Section 1 Bioenergy Fundamentals 31
Chapter 1 Introduction to Bioenergy 33
1.1 Energy 33
1.2 Non-renewable Energy 35
1.3 Renewable Energy 40
1.4 Why Renewable Energy? 41
1.4.1 Energy Insecurity 41
1.4.2 Depletion of Energy Resources Reserves 42
1.4.3 Concern about Climate Change 43
1.5 Bioenergy 43
1.5.1 Current Status of Bioenergy Production 44
1.5.2 Merits of Bioenergy 45
1.5.3 Demerits of Bioenergy 46
References 47
Exercise Problems 48
Chapter 2 Units and Conversions 49
2.1 Introduction 49
2.2 Units of Measurement 49
2.3 Useful Units and Conversions 51
2.4 Energy and Heat 55
2.4.1 Power 56
2.4.2 Heating Value 57
2.4.3 Heat Capacity 58
2.5 Volume–Mass Relationship 59
2.6 Ideal Gas Law 59
2.7 Henry´s Law 60
References and Further Reading 62
Exercise Problems 62
Chapter 3 Mass and Energy Balances 63
3.1 Introduction 63
3.2 Mass Balances 63
3.3 Enthalpy 65
3.4 Energy Balances 66
References and Further Reading 69
Exercise Problems 69
Chapter 4 Thermodynamics and Kinetics of Basic Chemical Reactions 72
4.1 Introduction 72
4.2 Reaction Thermodynamics 73
4.3 Reaction Kinetics 76
References and Further Reading 78
Exercise Problems 78
Chapter 5 Organic and Carbohydrate Chemistry 80
5.1 Introduction 80
5.2 Structural Formulas and Classification of Organic Compounds 81
5.3 Aliphatic Compounds 82
5.3.1 Alkanes and Cycloalkanes 82
5.3.2 Alkenes and Alkynes 84
5.3.3 Alcohols and Ethers 86
5.3.4 Aldehydes and Ketones 87
5.3.5 Carboxylic Acids and Derivatives 88
5.3.6 Other Aliphatic Compounds 91
5.4 Aromatic Compounds 91
5.5 Heterocyclic Compounds 92
5.6 Carbohydrates 93
5.6.1 Monosaccharides 93
5.6.2 Oligosaccharides 95
5.6.3 Polysaccharides 95
5.7 Proteins and Lipids 96
5.7.1 Proteins 96
5.7.2 Lipids 98
References and Further Reading 99
Exercise Problems 100
Chapter 6 Plant Structural Chemistry 101
6.1 Introduction 101
6.2 Carbohydrates and Their Classification 102
6.2.1 Monosaccharides 102
6.2.2 Oligosaccharides 103
6.2.3 Polysaccharides 103
6.3 Main Constituents of Plant Biomass 103
6.3.1 Structural Carbohydrates 105
6.3.2 Lignin 107
6.4 Plant Cell Wall Architecture 110
6.4.1 Primary Cell Wall 110
6.4.2 Secondary Cell Wall 114
References 115
Exercise Problems 116
Chapter 7 Microbial Metabolisms 118
7.1 Introduction 118
7.2 Carbon Metabolisms 119
7.3 Metabolic Models 123
7.3.1 Microbial Growth in Batch Culture 123
7.3.2 Monod Equation for Microbial Growth 125
7.3.3 Inhibition and Multiple Substrate Models 126
7.3.4 Monod-Based Kinetic Model in Batch Bioreactors 127
7.3.5 Monod Model Coupled with Mass Transfer 130
7.3.6 Mass Balances and Reactions in Fed-Batch and Continuous-Stirred Tank Bioreactors 131
7.3.7 Elemental Balance and Stoichiometric Models 132
References 134
Exercise Problems 135
Appendix 7.1 Code Useful for Example 7.2 135
Section 2 Bioenergy Feedstocks 137
Chapter 8 Starch-Based Feedstocks 139
8.1 Introduction 139
8.2 Corn 140
8.2.1 Growth and Development of Corn 140
8.2.2 Growing Degree Days for Corn Growth 141
8.2.3 Cultivation Practices in Corn Production 142
8.2.4 Harvesting and Storage of Corn 144
8.3 Sweet Potato 146
8.3.1 Growth and Development of Sweet Potato 147
8.3.2 Cultivation Practices in Sweet Potato Production 147
8.3.3 Harvesting and Storage of Sweet Potato 149
8.4 Cassava 150
8.4.1 Growth and Development of Cassava 150
8.4.2 Cultivation Practices in Cassava Production 151
8.4.3 Harvesting and Storage of Cassava 153
8.5 Comparison of Composition, Yield, and Energy Potential of Corn, Sweet Potato, and Cassava 154
References 155
Exercise Problems 156
Chapter 9 Oilseed-Based Feedstocks 157
9.1 Introduction 157
9.2 Soybean 158
9.2.1 Feedstock Production and Handling 158
9.2.2 Nutrient and Water Use 161
9.3 Rapeseed and Canola 162
9.3.1 Feedstock Production and Handling 162
9.3.2 Nutrient and Water Use 164
9.4 Oil Palm 165
9.4.1 Feedstock Production and Handling 165
9.4.2 Nutrient and Water Use 166
9.5 Jatropha 166
9.5.1 Feedstock Production and Handling 166
9.5.2 Nutrient and Water Use 167
9.6 Camelina 168
9.6.1 Feedstock Production and Handling 168
9.6.2 Nutrient and Water Use 169
9.7 Yield and Oil Content of Major Oilseed Feedstocks 169
References 170
Exercise Problems 172
Chapter 10 Lignocellulose-Based Feedstocks 173
10.1 Introduction 173
10.2 Feedstock Availability and Production 174
10.2.1 Crop Residues 174
10.2.2 Dedicated Energy Crops 177
10.2.3 Forest Biomass 179
10.3 Feedstock Logistics 181
10.3.1 Harvesting and Collection of Crop Residues and Energy Crops 181
10.3.2 Harvesting of Forest Biomass 190
10.3.3 Transportation 194
10.3.4 Storage 195
References 197
Exercise Problems 198
Chapter 11 Algae-Based Feedstocks 200
11.1 Introduction 200
11.2 Algae Classification, Cell Structure, and Characteristics 201
11.3 Mechanism of Algal Growth 202
11.4 Algal Growth Conditions 204
11.4.1 Light 204
11.4.2 CO2 Concentration 205
11.4.3 Temperature, pH, and Salinity 205
11.4.4 Nutrients 206
11.5 Steps in Algal-Biodiesel Production 206
11.5.1 Algal Cultivation 208
Modeling of Algal Growth 212
11.5.2 Harvesting 213
11.5.3 Drying 220
11.5.4 Lipid Extraction 222
References 225
Exercise Problems 226
Section 3 Biological Conversion Technologies 229
Chapter 12 Pretreatment of Lignocellulosic Feedstocks 231
12.1 Introduction 231
12.2 What Does Pretreatment Do? 232
12.3 Physical Pretreatment 235
12.4 Thermochemical Pretreatment 237
12.4.1 Acid Pretreatment 237
12.4.2 Alkaline Pretreatment 239
12.4.3 Organosolv Pretreatment 243
12.4.4 Sulfite-Based Pretreatment 243
12.4.5 The Combined Severity (CS) Factor 245
12.5 Other Pretreatments 246
12.5.1 Cellulose Solvent-Based Pretreatment 246
12.5.2 Biological Pretreatment 247
12.5.3 Ultrasonic Pretreatment 248
12.5.4 Microwave Pretreatment 248
12.6 Co-products from Lignocellulosic Feedstock Pretreatment 249
12.6.1 Hemicellulosic Sugars 249
12.6.2 Furans (Furfural and HMF) 249
12.6.3 Lignin 250
References 250
Exercise Problems 251
Chapter 13 Enzymatic Hydrolysis 254
13.1 Introduction 254
13.2 Nomenclature and Classification of Hydrolases 255
13.3 Enzyme Kinetics 256
13.3.1 Fundamentals of Reaction Rate: Transition State Theory 257
13.3.2 Reaction Rate and Reaction Orders 257
13.3.3 Michaelis–Menten Kinetics 262
13.3.4 Enzyme Inhibition 269
13.4 Enzymatic Hydrolysis of Carbohydrates 270
13.4.1 Carbohydrate Structure 270
13.4.2 Starch Depolymerization 271
13.4.3 Cellulose Hydrolysis 273
13.4.4 Hemicellulose Hydrolysis 275
13.4.5 Key Factors Affecting the Enzymatic Hydrolysis of Lignocellulosic Feedstocks 275
References 276
Exercise Problems 277
Chapter 14 Ethanol Fermentation 280
14.1 Introduction 280
14.2 Biochemical Pathway 282
14.2.1 Hexose Fermentation 283
14.2.2 Pentose Fermentation 290
14.3 Byproducts Formation during Ethanol Fermentation 293
14.4 Microbial Cultures 294
14.4.1 Yeast Culture for Hexose Fermentation 295
14.4.2 Microbial Culture for Pentose Fermentation 296
14.5 Environmental Factors Affecting Ethanol Fermentation 297
14.5.1 Nutrients 297
14.5.2 pH 297
14.5.3 Temperature 298
14.5.4 Others 298
14.6 Industrial Fuel-Grade Ethanol Production 298
14.6.1 Seed Culture Preparation 299
14.6.2 Industrial Ethanol Fermentation 300
14.6.3 Ethanol Recovery 302
References 304
Exercise Problems 305
Chapter 15 Butanol Fermentation 307
15.1 Introduction 307
15.2 Butanol Fermentation 309
15.2.1 Acetone-Butanol-Ethanol (ABE) Fermentation 309
15.2.2 Biochemical Pathway 310
15.2.3 Stoichiometry and Product Yield 312
15.2.4 Microbiology 314
15.3 Factors Affecting Butanol Fermentation 315
15.3.1 pH 315
15.3.2 Availability of Co-factors (NADH) 315
15.3.3 Medium Composition 316
15.3.4 Product Inhibition 317
15.4 Substrates for Butanol Fermentation 317
15.5 Advanced Butanol Fermentation Techniques and Downstream Processing 318
15.5.1 Gas Stripping 318
15.5.2 Vacuum Fermentation 319
15.5.3 Liquid–Liquid Extraction 320
15.5.4 Pervaporation 321
References 322
Exercise Problems 324
Chapter 16 Syngas Fermentation 326
16.1 Introduction 326
16.2 Stoichiometry 327
16.3 Syngas-Fermenting Bacteria 328
16.3.1 Biochemical Pathway 329
16.3.2 Genetic Transformation of Syngas-Fermenting Bacteria 330
16.3.3 Microbial Kinetics 331
16.4 Factors Affecting Syngas Fermentation 333
16.4.1 Medium Composition 333
16.4.2 pH 333
16.4.3 Temperature 333
16.4.4 Mass Transfer 334
16.4.5 Bioreactor Configurations 336
16.5 Product Recovery 338
References 339
Exercise Problems 341
Chapter 17 Fundamentals of Anaerobic Digestion 343
17.1 Introduction 343
17.2 Organic Conversion in an Anaerobic Process 345
17.3 Stoichiometry of Methane Production 350
17.4 Important Considerations in Anaerobic Digestion 353
17.4.1 Temperature 353
17.4.2 pH and Alkalinity 355
17.4.3 Nutrients 357
17.4.4 Toxic Materials and Inhibition 358
17.4.5 Total Solids Content 359
17.4.6 Volumetric Organic Loading Rate (VOLR) 360
17.4.7 Hydraulic Retention Time (HRT) and Solids Retention Time (SRT) 360
17.4.8 Start-up 361
17.5 Anaerobic Digestion Model No. 1 (ADM1) 361
References 364
Exercise Problems 366
Chapter 18 Biogas Production and Applications 368
18.1 Introduction 368
18.2 Anaerobic Digestion Systems 368
18.2.1 Suspended Growth System 369
18.2.2 Attached Growth System 376
18.2.3 Solid-State Anaerobic Digestion System 379
18.2.4 Household Digester 381
18.3 Biogas Cleaning and Upgrading 384
18.3.1 Physical Methods 384
18.3.2 Chemical Methods 385
18.3.3 Biological Methods 386
18.4 Biogas Utilization 387
18.5 Digestate 388
References 388
Exercise Problems 389
Chapter 19 Microbial Fuel Cells 391
19.1 Introduction 391
19.2 How Does a Microbial Fuel Cell (MFC) Work? 393
19.3 Electron Transfer Processes 395
19.3.1 Mediated Electron Transfer 396
19.3.2 Direct Electron Transfer (DET) 397
19.3.3 Bacterial Nanowires 398
19.3.4 Long-Range Extracellular Electron Transfer 399
19.4 Electrical Power and Energy Generation 400
19.4.1 Redox Reaction and Electrode Potential 400
19.4.2 Electromotive Force and Cell Potential 402
19.4.3 Electrical Power 403
19.4.4 Coulombic and Energy Efficiency 405
19.5 Design and Operation of an MFC 407
19.5.1 MFC Configurations 407
19.5.2 Separators 409
19.5.3 Anode Materials and Catalysts 410
19.5.4 Cathode Materials and Catalysts 410
19.5.5 Substrates 411
References 411
Exercise Problems 412
Section 4 Thermal Conversion Technologies 415
Chapter 20 Combustion for Heat and Power 417
20.1 Introduction 417
20.2 Fundamentals of Biomass Combustion 419
20.2.1 Biomass Combustion Phases 419
20.2.2 Biomass Combustion Reaction and Stoichiometry 420
20.3 Biomass Properties and Preprocessing 423
20.3.1 Biomass Properties 423
20.3.2 Biomass Preprocessing 424
20.4 Biomass Furnaces 425
20.4.1 Fixed-Bed Furnaces 425
20.4.2 Fluidized-Bed Furnaces 426
20.5 Power Generation 427
20.5.1 Carnot Cycle 428
20.5.2 Rankine Cycle 429
20.5.3 The Air-Standard Brayton Cycle 431
20.5.4 Combined Gas Turbine and Steam Turbine Power Cycles 432
20.6 Biomass Co-firing with Coal 432
20.7 Environmental Impact and Emissions of Biomass Combustion 434
References 435
Exercise Problems 435
Chapter 21 Gasification 437
21.1 Introduction 437
21.2 Fundamentals of Gasification 438
21.2.1 Gasifying Agents 438
21.2.2 Gasification Reactions 439
21.3 Gasifiers 440
21.3.1 Moving-Bed Gasifiers 440
21.3.2 Fluidized-Bed Gasifiers 441
21.3.3 Entrained-Flow Gasifiers 443
21.4 Feedstock Preparation and Characterization 444
21.4.1 Feedstock Preparation 444
21.4.2 Feedstock Characterization 445
21.5 Gasification Mass and Energy Balance 446
21.5.1 Mass Balance 446
21.5.2 Energy Balance 447
21.6 Gas Cleanup 449
21.7 Applications of Biomass Gasification 449
References 451
Exercise Problems 451
Appendix 452
Chapter 22 Pyrolysis 453
22.1 Introduction 453
22.2 Slow vs. Fast Pyrolysis 455
22.2.1 Slow Pyrolysis 455
22.2.2 Fast Pyrolysis 455
22.3 Pyrolysis Reactions and Mechanisms 456
22.3.1 Pyrolysis Reactions 456
22.3.2 Reaction Mechanisms 458
22.4 Single-Particle Models 461
22.5 Bio-Oil 462
22.6 Charcoal 464
22.7 Bio-oil Refining 464
References 467
Exercise Problems 468
Section 5 Biobased Refinery 469
Chapter 23 Sugar-Based Biorefinery 471
23.1 Introduction 471
23.2 Stoichiometry 472
23.3 Sugarcane Ethanol 473
23.3.1 Ethanol Production Process 473
23.3.2 Sugarcane-to-Ethanol Biorefinery 474
23.4 Sweet Sorghum Ethanol 476
23.5 Sugar Beet Ethanol 477
23.6 Biochemicals and Biopolymers 478
23.6.1 Lactic Acid 478
23.6.2 Succinic Acid 479
23.6.3 1,3-Propanediol 480
23.6.4 3-Hydroxypropionic Acid 480
References 480
Exercise Problems 481
Chapter 24 Starch-Based Biorefinery 483
24.1 Introduction 483
24.2 Stoichiometry of Starch to Ethanol 485
24.2.1 Corn-Based Ethanol Biorefinery 486
24.2.2 Corn-to-Ethanol Plants and Sorghum-to-Ethanol Plants 491
24.2.3 Cassava-Based Ethanol Biorefinery 491
24.3 Integrated Farm-Scale Biorefinery 494
References 495
Exercise Problems 496
Chapter 25 Lignocellulose-Based Biorefinery 497
25.1 Introduction 497
25.2 Cell Structure of Lignocellulosic Feedstocks 498
25.3 Stoichiometry and Energy Content 498
25.3.1 Stoichiometry 500
25.3.2 Energy Content 501
25.4 Lignocellulosic Biomass Conversion to Fuel 502
25.5 Co-Products from Lignocellulose-Based Biorefinery 503
25.5.1 Products from Lignin 504
25.5.2 Products from Hemicellulose 505
25.6 Industrial Lignocellulose-Based Biorefinery 506
References 508
Exercise Problems 510
Chapter 26 Lipid-Based Biorefinery 511
26.1 Introduction 511
26.2 Lipid-Based Feedstocks 513
26.2.1 Plant Oils 513
26.2.2 Animal Fats 514
26.2.3 Waste Cooking Oils 514
26.3 Chemical Properties of Lipids 514
26.3.1 Chemical Composition of Lipids 514
26.3.2 Average Molecular Weight of Triglycerides 514
26.3.3 Seed Oil Extraction 518
26.4 Biodiesel from Lipids 521
26.4.1 Biodiesel Production via Transesterification 521
26.4.2 Parameters Affecting Biodiesel Production 525
26.4.3 Quality of Biodiesel 527
26.5 Lipid-Based Biorefinery 528
26.5.1 High-Value Biobased Products from Seed Oils 528
26.5.2 Seed Meals and Their Applications 529
26.5.3 Utilization of Glycerol from Biodiesel Production 530
References 531
Exercise Problems 532
Section 6 Bioenergy System Analysis 535
Chapter 27 Techno-Economic Assessment 537
27.1 Introduction 537
27.2 What Is Techno-Economic Analysis? 538
27.3 Basic Steps in TEA 539
27.4 Tools, Software, and Data Sources for Performing TEA 547
27.4.1 Tools Available for Performing TEA 547
27.4.2 Procedure for TEA Using Commercial Software 547
27.4.3 Data Sources for Performing TEA 548
27.4.4 Process Optimization Using TEA 548
References 548
Exercise Problems 548
Chapter 28 Life-Cycle Assessment 551
28.1 Introduction 551
28.2 What Is Life-Cycle Assessment (LCA)? 552
28.3 Procedure for LCA 554
28.3.1 Goal Definition and Scoping 554
28.3.2 Life-Cycle Inventory 556
28.3.3 Life-Cycle Impact Assessment 560
28.3.4 Life-Cycle Interpretation 562
28.4 Tools Available to Perform LCA 563
28.5 Advanced Topics 563
28.5.1 Sensitivity Analysis 563
28.5.2 Process Optimization Using LCA 563
28.5.3 Consequential LCA 563
References 569
Exercise Problems 571
Chapter 29 Government Policy and Standards for Bioenergy 574
29.1 Overview of the Bioenergy Market 574
29.2 Rationale for Government Intervention 576
29.3 Government Intervention through Policy Tools 580
29.4 Biofuels Policy Implementations: Existing Policy Instruments 580
29.4.1 Tax Credit/Subsidy 581
29.4.2 Carbon Tax 582
29.4.3 Feed-In Tariff 584
29.4.4 Biofuels Regulations and Standards 585
29.4.5 Emissions Trading or "Cap-and-Trade" 586
29.4.6 Flex-Fuel Vehicles 587
29.4.7 Farm Policies 587
29.4.8 Trade Policies 588
29.4.9 Funding for Research and Development 588
29.5 Implications of Biofuels Policies 589
References 591
Exercise Problems 591
Index 593
EULA 600
| Erscheint lt. Verlag | 15.9.2016 |
|---|---|
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Biologie ► Botanik |
| Technik | |
| Weitere Fachgebiete ► Land- / Forstwirtschaft / Fischerei | |
| Schlagworte | Agricultural Economics & Resource Management • Agriculture • Ãkonomie u. Ressourcenmanagement i. d. Landwirtschaft • Bioenergie • bioenergy • Biorenewable Resources • Biowissenschaften • Botanik • Botanik / Biotechnologie • Companion • contributors • exercise • fundamentals • Heat • henrys • ideal gas • Introduction • kumar khanal • Landwirtschaft • Life Sciences • Nachwachsende Rohstoffe • Nonrenewable • Ökonomie u. Ressourcenmanagement i. d. Landwirtschaft • Plant Biotechnology • problems units • References • references exercise • renewable • samir • section • Units • useful • xlist • xwebsite |
| ISBN-10 | 1-118-56836-2 / 1118568362 |
| ISBN-13 | 978-1-118-56836-1 / 9781118568361 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich