Turbulence and Transport Phenomena (eBook)
634 Seiten
Wiley (Verlag)
978-1-394-36124-3 (ISBN)
An accessible introduction to turbulence modelling, combining core theory with practical use of the most common models
Turbulence and Transport Phenomena: Modelling Techniques in Computational Fluid Dynamics offers a clear and practical introduction to turbulence theory and its modelling strategy. It bridges fundamental principles with real-world CFD implementation, making complex ideas accessible without losing technical depth.
The book builds upon essential fluid mechanics and mathematical foundations, ultimately progressing to advanced turbulence modelling methods, including RANS, LES, and compressible flow analysis. Step-by-step derivations, examples, and practical guidance help readers connect theory to engineering practice.
Turbulence and Transport Phenomena includes key features such as:
- Fundamentals of fluid motion and the meticulous derivation of the Navier-Stokes equations
- Energy and species transport, boundary and initial conditions
- Detailed RANS and LES modelling approaches
- Vorticity dynamics and turbulent transport mechanisms
- Compressible turbulence and coherent structures
- Curvature and corner flow corrections
Designed for both newcomers and experienced professionals, Turbulence and Transport Phenomena provides the knowledge and tools needed to master turbulence modelling in aerospace, automotive, energy, environmental, and process engineering applications.
Sofen Kumar Jena, Ph.D., is a Process Modelling Engineer and Hydrogen Specialist at Bosch Transmission Technology, BV, Netherlands. He works on advanced research in sustainable energy and fluid mechanics. Before joining the industry, he served as a researcher and Assistant Professor, contributing to the Turbulence Research Group at Université de Pau et des Pays de l'Adour (France) and the Process & Energy Department at Delft University of Technology (Netherlands).
Notation
Symbols
- Euclidean space
- Real number space
- Flow domain (Chapter 1), Magnitude of rotation vector (Chapter 7)
- Flow domain boundary
- Basis vectors
- Group of linear operators in
- Eigenvalue (Chapter 1), Mean free path (Chapter 2)/ Secondary viscosity (Chapter 3)/ Thermal conductivity (Chapter 4)
- Knudsen number
- Fluid volume
- Density
- Specific volume
- Spatial coordinate
- Material point
- Time
- Characteristics length
- Strain rate tensor
- Rotation rate tensor
- Levi-Civita symbol
- Kronecker delta symbol
- Conservative force
- Scalar potential
- Traction vector
- Unit normal vector
- Cauchy’s stress tensor
- Mechanical pressure of fluids
- Thermodynamic pressure
- Cartesian component of velocity
- Dynamic viscosity
- Kinematic viscosity
- Deviatoric stress tensor
- Boltzmann constant
- Absolute temperature
- Mean diameter (Chapter 3), Shortest distance from nearest wall (Chapters 9 and 11)
- Stream function
- Velocity potential
- Characteristic gas constant
- Universal gas constant
- Net heat interaction per unit mass
- Net work done per unit mass
- Molar mass of air
- Internal energy
- Specific enthalpy
- Isobaric compressibility
- Isothermal compressibility
- Specific heat at constant pressure
- Specific heat at constant volume
- Specific entropy
- Number of equally probable states for molecules
- Helmholtz free energy
- Gibbs thermodynamic potential
- Molecular weight of the species
- Molar concentration of species
- Species concentration strength
- Concentration flux
- Binary diffusion coefficient
- Tangential direction at wall
- Normal direction at wall
- Mass flow rate
- Entrance length of tube
- Tube diameter
- Skin friction coefficient
- Similarity transformation coordinate
- Drag force
- Boundary layer thickness
- Displacement thickness
- Momentum thickness
- Energy thickness
- Thermal boundary layer thickness
- Shape factor
- Prandtl number
- Péclet number
- Nussult number
- heat transfer coefficient
- Reynolds number
- Thermal diffusivity
- Stanton number
- Self similar function
- Mechanical energy
- Viscous dissipation
- Net energy injection
- cross correlation coefficient
- Turbulent diffusion
- Pressure diffusion
- Viscous or molecular diffusion of
- Viscous dissipation tensor
- Convective transport of kinetic energy
- Pressure coefficient
- Enstrophy
- Energy at wave number
- Klebanoff intermittency function
- Turbulence diffusivity
- Scalar diffusivity
- Circulation
- Turbulent intensity
- Wave number
- Von Kármán constant
- Turbulent kinetic energy
- Mixing length
- Separation distance between two points at distance
- Integral length scale
- Taylor micro scale
- Kolmogorov’s length scale
- Geometric dimension of the flow field
- Kinetic helicity
- Eddy viscosity
- Specific dissipation
- Mean rate-of-rotation tensor
- Mean rate-of-rotation tensor magnitude
- Reynolds average pressure
- Fluctuating component of pressure
- Production of due to buoyancy
- Production of due to shear
- Turbulent Prandtl number
- Pressure-strain rate correlation
- Reynolds average scaler
- Fluctuating component of scalar
- Turbulent flux
- Mean strain rate tensor
- Mean strain rate magnitude
- Reynolds stress
- Wall shear stress
- Kolmogorov’s time scale
- Reynolds average velocity
- Fluctuating component of velocity
- Dimensionless scaled velocity
- Shear velocity
- Kolmogorov’s velocity scale
- Velocity associated with scale
- Dimensionless scaled distance from wall
- Vorticity vector
- Solenoidal dissipation
- Dilatation dissipation
- Adiabatic index (Chapters 4 and 12)
- Sutherland constant for dynamic viscosity
- Sutherland constant for thermal conductivity
- Specific entropy
- Mach number
- Turbulent Mach number
- LES filter width
- LES filtering kernel
- Subgrid scale stress (Chapter 11)
- Subgrid scale heat flux (Chapter 11)
- Subgrid scale Prandtl number
- Subgrid scale kinematic viscosity
- Mixing length for subgrid scales
- Smagorinsky coefficient
- Smagorinsky constant
- von Kármán constant
- Damping constant
- SGS stress tensor at the test-filter level
- Resolved-scale stress tensor
- Field variable
- Filtered part of the field variable
- subgrid-scale component of the field variable
- Modified pressure
- Velocity gradient tensor
- Deviatoric part of the square of the velocity gradient tensor
- WALE constant
- Subgrid-scale kinetic energy
- Subgrid-scale kinetic energy production
- Subgrid-scale dissipation
- DKES model constant for
- DKES model constant for
- Subgrid-scale thermal transport
- Coordinate direction
- Normal distance to the nearest wall
- Streamwise grid spacing
- Wall-normal grid spacing
- Spanwise grid spacing
- Dimensionless scaled distance in streamwise direction
- Dimensionless scaled distance in spanwise direction
- DES length scale
- RANS length scale
- LES length scale
- Dissipation for DES
- Wall proximity
- Dimensionless temperature
Abbreviations
- 2DURANS
- Two-dimensional unsteady RANS
- 3DRANS
- Three-dimensional RANS
- 3DURANS
- Three-dimensional unsteady RANS
- BSL
- Baseline
- CFD
- Computational fluid dynamics
- CS
- Coherent structures
- DDES
- Delayed detached eddy simulation
- DES
- Detached eddy simulation
- DKES
- Dynamic kinetic energy subgrid-scale model
- DNS
- Direct numerical simulation
- DSL
- Dynamic Smagorinsky–Lilly model
- FANS
- Favre averaged Navier–Stokes
- FLOPS
- Floating-point operations per second
- GGDH
- Generalized gradient diffusion hypothesis
- GIS
- Grid induced separation
- HPC
- High performance computing
- IDDES
- Improved delayed detached eddy simulation
- IP
- Isotropization of production
- KH
- Kelvin–Helmholtz
- LES
- Large eddy simulation
- LESIQ
- Large eddy simulation indicator of quality
- LRR
- Launder, Reece and Rodi Reynolds stress model
- MSD
- Modelled stress depletion
- QDNS
- Quasi DNS or wall resolved LES
- RANS
- Reynolds-averaged Navier–Stokes
- RNG
- Renormalization group
- RTT
- Reynolds transport theorem
- RSM
- Reynolds stress model
- SBLI
- Shock boundary layer interaction
- SGDH
- Simple gradient diffusion hypothesis
- SGS
- Subgrid-scale
- SL
- Smagorinsky-Lilly model
- SRA
- Strong Reynolds analogy
- SSG
- Speziale, Sarkar and Gatski Reynolds stress...
| Erscheint lt. Verlag | 24.12.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Maschinenbau |
| Schlagworte | and transport formulations • CFD solvers • compressible turbulence modelling • Einstein tensor notation • Fluid Kinematics • Large Eddy Simulation • LES • navier-stokes equations • Reynolds-averaged modelling • turbulent flows |
| ISBN-10 | 1-394-36124-6 / 1394361246 |
| ISBN-13 | 978-1-394-36124-3 / 9781394361243 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich