Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Turbulence and Transport Phenomena (eBook)

Modelling Techniques in Computational Fluid Dynamics
eBook Download: EPUB
2025
634 Seiten
Wiley (Verlag)
978-1-394-36124-3 (ISBN)

Lese- und Medienproben

Turbulence and Transport Phenomena - Sofen Kumar Jena
Systemvoraussetzungen
121,99 inkl. MwSt
(CHF 119,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

An accessible introduction to turbulence modelling, combining core theory with practical use of the most common models

Turbulence and Transport Phenomena: Modelling Techniques in Computational Fluid Dynamics offers a clear and practical introduction to turbulence theory and its modelling strategy. It bridges fundamental principles with real-world CFD implementation, making complex ideas accessible without losing technical depth.

The book builds upon essential fluid mechanics and mathematical foundations, ultimately progressing to advanced turbulence modelling methods, including RANS, LES, and compressible flow analysis. Step-by-step derivations, examples, and practical guidance help readers connect theory to engineering practice.

Turbulence and Transport Phenomena includes key features such as:

  • Fundamentals of fluid motion and the meticulous derivation of the Navier-Stokes equations
  • Energy and species transport, boundary and initial conditions
  • Detailed RANS and LES modelling approaches
  • Vorticity dynamics and turbulent transport mechanisms
  • Compressible turbulence and coherent structures
  • Curvature and corner flow corrections

Designed for both newcomers and experienced professionals, Turbulence and Transport Phenomena provides the knowledge and tools needed to master turbulence modelling in aerospace, automotive, energy, environmental, and process engineering applications.

Sofen Kumar Jena, Ph.D., is a Process Modelling Engineer and Hydrogen Specialist at Bosch Transmission Technology, BV, Netherlands. He works on advanced research in sustainable energy and fluid mechanics. Before joining the industry, he served as a researcher and Assistant Professor, contributing to the Turbulence Research Group at Université de Pau et des Pays de l'Adour (France) and the Process & Energy Department at Delft University of Technology (Netherlands).

Notation


Symbols


Euclidean space
Real number space
Flow domain (Chapter 1), Magnitude of rotation vector (Chapter 7)
Flow domain boundary
Basis vectors
Group of linear operators in
Eigenvalue (Chapter 1), Mean free path (Chapter 2)/ Secondary viscosity (Chapter 3)/ Thermal conductivity (Chapter 4)
Knudsen number
Fluid volume
Density
Specific volume
Spatial coordinate
Material point
Time
Characteristics length
Strain rate tensor
Rotation rate tensor
Levi-Civita symbol
Kronecker delta symbol
Conservative force
Scalar potential
Traction vector
Unit normal vector
Cauchy’s stress tensor
Mechanical pressure of fluids
Thermodynamic pressure
Cartesian component of velocity
Dynamic viscosity
Kinematic viscosity
Deviatoric stress tensor
Boltzmann constant
Absolute temperature
Mean diameter (Chapter 3), Shortest distance from nearest wall (Chapters 9 and 11)
Stream function
Velocity potential
Characteristic gas constant
Universal gas constant
Net heat interaction per unit mass
Net work done per unit mass
Molar mass of air
Internal energy
Specific enthalpy
Isobaric compressibility
Isothermal compressibility
Specific heat at constant pressure
Specific heat at constant volume
Specific entropy
Number of equally probable states for molecules
Helmholtz free energy
Gibbs thermodynamic potential
Molecular weight of the species
Molar concentration of species
Species concentration strength
Concentration flux
Binary diffusion coefficient
Tangential direction at wall
Normal direction at wall
Mass flow rate
Entrance length of tube
Tube diameter
Skin friction coefficient
Similarity transformation coordinate
Drag force
Boundary layer thickness
Displacement thickness
Momentum thickness
Energy thickness
Thermal boundary layer thickness
Shape factor
Prandtl number
Péclet number
Nussult number
heat transfer coefficient
Reynolds number
Thermal diffusivity
Stanton number
Self similar function
Mechanical energy
Viscous dissipation
Net energy injection
cross correlation coefficient
Turbulent diffusion
Pressure diffusion
Viscous or molecular diffusion of
Viscous dissipation tensor
Convective transport of kinetic energy
Pressure coefficient
Enstrophy
Energy at wave number
Klebanoff intermittency function
Turbulence diffusivity
Scalar diffusivity
Circulation
Turbulent intensity
Wave number
Von Kármán constant
Turbulent kinetic energy
Mixing length
Separation distance between two points at distance
Integral length scale
Taylor micro scale
Kolmogorov’s length scale
Geometric dimension of the flow field
Kinetic helicity
Eddy viscosity
Specific dissipation
Mean rate-of-rotation tensor
Mean rate-of-rotation tensor magnitude
Reynolds average pressure
Fluctuating component of pressure
Production of due to buoyancy
Production of due to shear
Turbulent Prandtl number
Pressure-strain rate correlation
Reynolds average scaler
Fluctuating component of scalar
Turbulent flux
Mean strain rate tensor
Mean strain rate magnitude
Reynolds stress
Wall shear stress
Kolmogorov’s time scale
Reynolds average velocity
Fluctuating component of velocity
Dimensionless scaled velocity
Shear velocity
Kolmogorov’s velocity scale
Velocity associated with scale
Dimensionless scaled distance from wall
Vorticity vector
Solenoidal dissipation
Dilatation dissipation
Adiabatic index (Chapters 4 and 12)
Sutherland constant for dynamic viscosity
Sutherland constant for thermal conductivity
Specific entropy
Mach number
Turbulent Mach number
LES filter width
LES filtering kernel
Subgrid scale stress (Chapter 11)
Subgrid scale heat flux (Chapter 11)
Subgrid scale Prandtl number
Subgrid scale kinematic viscosity
Mixing length for subgrid scales
Smagorinsky coefficient
Smagorinsky constant
von Kármán constant
Damping constant
SGS stress tensor at the test-filter level
Resolved-scale stress tensor
Field variable
Filtered part of the field variable
subgrid-scale component of the field variable
Modified pressure
Velocity gradient tensor
Deviatoric part of the square of the velocity gradient tensor
WALE constant
Subgrid-scale kinetic energy
Subgrid-scale kinetic energy production
Subgrid-scale dissipation
DKES model constant for
DKES model constant for
Subgrid-scale thermal transport
Coordinate direction
Normal distance to the nearest wall
Streamwise grid spacing
Wall-normal grid spacing
Spanwise grid spacing
Dimensionless scaled distance in streamwise direction
Dimensionless scaled distance in spanwise direction
DES length scale
RANS length scale
LES length scale
Dissipation for DES
Wall proximity
Dimensionless temperature

Abbreviations


2DURANS
Two-dimensional unsteady RANS
3DRANS
Three-dimensional RANS
3DURANS
Three-dimensional unsteady RANS
BSL
Baseline
CFD
Computational fluid dynamics
CS
Coherent structures
DDES
Delayed detached eddy simulation
DES
Detached eddy simulation
DKES
Dynamic kinetic energy subgrid-scale model
DNS
Direct numerical simulation
DSL
Dynamic Smagorinsky–Lilly model
FANS
Favre averaged Navier–Stokes
FLOPS
Floating-point operations per second
GGDH
Generalized gradient diffusion hypothesis
GIS
Grid induced separation
HPC
High performance computing
IDDES
Improved delayed detached eddy simulation
IP
Isotropization of production
KH
Kelvin–Helmholtz
LES
Large eddy simulation
LESIQ
Large eddy simulation indicator of quality
LRR
Launder, Reece and Rodi Reynolds stress model
MSD
Modelled stress depletion
QDNS
Quasi DNS or wall resolved LES
RANS
Reynolds-averaged Navier–Stokes
RNG
Renormalization group
RTT
Reynolds transport theorem
RSM
Reynolds stress model
SBLI
Shock boundary layer interaction
SGDH
Simple gradient diffusion hypothesis
SGS
Subgrid-scale
SL
Smagorinsky-Lilly model
SRA
Strong Reynolds analogy
SSG
Speziale, Sarkar and Gatski Reynolds stress...

Erscheint lt. Verlag 24.12.2025
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte and transport formulations • CFD solvers • compressible turbulence modelling • Einstein tensor notation • Fluid Kinematics • Large Eddy Simulation • LES • navier-stokes equations • Reynolds-averaged modelling • turbulent flows
ISBN-10 1-394-36124-6 / 1394361246
ISBN-13 978-1-394-36124-3 / 9781394361243
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen - Planung - Montage

von Wilfried Franke; Bernd Platzer

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95