State Estimation of Multi-Agent Vehicle-Road Interaction Systems (eBook)
323 Seiten
Wiley-IEEE Press (Verlag)
978-1-394-29339-1 (ISBN)
Up-to-date discussions of the challenges and solutions in state estimation of vehicle neighborhood systems
In State Estimation of Multi-Agent Vehicle-Road Interaction Systems, a team of distinguished researchers introduces a novel conceptual framework that defines a system comprising vehicles and local road segments within a connected vehicle (V2X) environment-referred to as the vehicle neighborhood system. Creative estimation methods for both states and parameters within this system have been proposed and potential applications of these methods have been discussed. The book places particular emphasis on estimating and analyzing the motion states of the ego vehicle and the preceding vehicle, as well as the tire road friction coefficient.
The book covers a wide range of topics in the area of vehicle neighborhood systems, including sensor technologies, data fusion, filtering algorithms, engineering applications, and practical implementations of autonomous driving systems. It also explores common challenges in state and parameter estimation for related nonlinear systems, such as sensor data loss, unknown measurement noise, and model parameter perturbations. Corresponding solutions to these issues are proposed and discussed in detail.
The book also includes:
- A thorough introduction to ego-vehicle state estimation with sensor data loss
- Comprehensive explorations of unknown noise and parameter perturbations in ego-vehicle state estimation
- Practical discussions of tire-road friction coefficient estimation with parameter mismatch and data loss
- Complete treatments of preceding vehicle state estimation
Perfect for engineers and professionals with an interest in vehicle state estimation, State Estimation of Multi-Agent Vehicle-Road Interaction Systems will also benefit academics, scientists, and graduate students in areas like robotics, control systems, and autonomous systems.
Yan Wang, PhD, is currently a Research Fellow at the Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University.
Guodong Yin, PhD, is a Professor with the School of Mechanical Engineering, Southeast University. His research is focused on vehicle dynamics and control, automated vehicles, and connected vehicles.
Chao Huang, PhD, is currently a Senior Lecturer at The University of Adelaide, Australia.
Up-to-date discussions of the challenges and solutions in state estimation of vehicle neighborhood systems In State Estimation of Multi-Agent Vehicle-Road Interaction Systems, a team of distinguished researchers introduces a novel conceptual framework that defines a system comprising vehicles and local road segments within a connected vehicle (V2X) environment referred to as the vehicle neighborhood system. Creative estimation methods for both states and parameters within this system have been proposed and potential applications of these methods have been discussed. The book places particular emphasis on estimating and analyzing the motion states of the ego vehicle and the preceding vehicle, as well as the tire road friction coefficient. The book covers a wide range of topics in the area of vehicle neighborhood systems, including sensor technologies, data fusion, filtering algorithms, engineering applications, and practical implementations of autonomous driving systems. It also explores common challenges in state and parameter estimation for related nonlinear systems, such as sensor data loss, unknown measurement noise, and model parameter perturbations. Corresponding solutions to these issues are proposed and discussed in detail. The book also includes: A thorough introduction to ego-vehicle state estimation with sensor data loss Comprehensive explorations of unknown noise and parameter perturbations in ego-vehicle state estimation Practical discussions of tire-road friction coefficient estimation with parameter mismatch and data loss Complete treatments of preceding vehicle state estimation Perfect for engineers and professionals with an interest in vehicle state estimation, State Estimation of Multi-Agent Vehicle-Road Interaction Systems will also benefit academics, scientists, and graduate students in areas like robotics, control systems, and autonomous systems.
| Erscheint lt. Verlag | 16.10.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Elektrotechnik / Energietechnik |
| Schlagworte | Event-triggered Estimation • fault- tolerant estimation • model-based learning estimation • sensor data loss • State Estimation • tire road friction coefficient • Vehicle Neighborhood System • vehicle state estimation |
| ISBN-10 | 1-394-29339-9 / 1394293399 |
| ISBN-13 | 978-1-394-29339-1 / 9781394293391 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich