Robust Iterative Learning Control of Industrial Batch Systems (eBook)
283 Seiten
Springer-Verlag
978-981-96-9778-6 (ISBN)
This book offers advanced iterative learning control (ILC) and optimization methods for industrial batch systems, facilitating engineering applications subject to time- and batch-varying process uncertainties that could not be effectively addressed by the existing ILC methods. In particular, advanced ILC designs based on the classical proportional-integral-derivative (PID) control loop are presented for the convenience of application, which could not only realize perfect tracking of the desired output trajectory under repetitive process uncertainties and disturbance, but also maintain robust tracking against time-varying uncertainties and disturbance. Moreover, optimization-based ILC designs are provided to deal with the input and/or output constraints of batch process operation, based on the mode predictive control (MPC) principle for process optimization. Furthermore, predictor-based ILC designs are given to deal with time delay in the process input, state or output as often encountered in practice, which could obtain evidently improved control performance compared to the developed ILC methods mainly devoted to delay-free batch processes. In addition, data-driven ILC methods are also presented for application to batch operation systems with unknown dynamics and time-varying uncertainties. Benchmark examples from the existing literature are used to demonstrate the advantages of the proposed ILC methods, along with real applications to industrial injection molding machines, 6-degree-of-freedom robotic manipulator, and refrigerated/heating circulators of pharmaceutical crystallizers. This book will be a valuable source of information for control engineers and researchers in industrial process control theory and engineering field. It can also be used as an advanced textbook for undergraduate and graduate students in control engineering, process system engineering, chemical engineering, mechanical engineering, electrical engineering, biomedical engineering and industrial automation engineering.
| Erscheint lt. Verlag | 25.9.2025 |
|---|---|
| Reihe/Serie | Intelligent Control and Learning Systems |
| Zusatzinfo | XIV, 283 p. 86 illus., 74 illus. in color. |
| Sprache | englisch |
| Themenwelt | Technik ► Elektrotechnik / Energietechnik |
| Technik ► Maschinenbau | |
| Schlagworte | Batch Run Optimization • Data-driven control • Disturbance Rejection • Industrial Batch Processes • Iterative Learning Control • Mode Predictive Control • Output Feedback • PID Control • Robust Stability • Set-Point Tracking • State Observer • Time delay |
| ISBN-10 | 981-96-9778-6 / 9819697786 |
| ISBN-13 | 978-981-96-9778-6 / 9789819697786 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich