Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Hydrogen Energy Production and Fuel Generation (eBook)

eBook Download: PDF
2025
648 Seiten
Wiley-Scrivener (Verlag)
978-1-394-24853-7 (ISBN)

Lese- und Medienproben

Hydrogen Energy Production and Fuel Generation -
Systemvoraussetzungen
216,99 inkl. MwSt
(CHF 209,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Invest in the future of the planet by delving into this comprehensive guide on hydrogen energy, a critical solution for sustainable power, and gain the knowledge to contribute to this revolutionary field.

Hydrogen energy has emerged as one of the most promising solutions to the energy and environmental challenges of the 21st century. As we look for sustainable and clean alternatives to replace fossil fuels, hydrogen stands out not only for its abundance but also for its potential to revolutionize diverse sectors such as transport, industry, and energy generation. However, for this revolution to become a reality, a comprehensive and interdisciplinary understanding of the technologies and methods related to the production, storage, distribution, and utilization of hydrogen is essential. The subject of hydrogen energy production and fuel generation is closely linked to the broader goals of sustainability, energy transition, and climate change mitigation. The development of efficient and cost-effective methods to produce hydrogen from renewable sources, such as electrolysis powered by renewable electricity, contributes to the shift towards a green energy economy. Additionally, the integration of hydrogen with renewable energy systems enables the storage and utilization of intermittent renewable sources, enhancing the reliability and stability of the grid.

This book encompasses principles and advancements in chemistry, physics, materials science, engineering, and environmental sciences. This interdisciplinary approach fosters collaboration and knowledge exchange, leading to breakthroughs in hydrogen production, storage, and utilization. In terms of industry development, the book addresses the growing demand for alternative energy sources in sectors such as transportation, industry, and power generation. As the world moves towards decarbonization and reducing reliance on fossil fuels, hydrogen has emerged as a promising solution due to its high energy density and potential for zero-emission operations. The book explores the practical applications of hydrogen energy, including fuel cell vehicles, hydrogen-powered industrial processes, and integrated energy systems. By addressing this comprehensive context, the book serves as a valuable resource for researchers, professionals, and policymakers seeking to understand and contribute to the advancement of this critical field.

Inamuddin, PhD, is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of awards, including the Department of Science and Technology, India, Fast-Track Young Scientist Award and Young Researcher of the Year Award 2020 from Aligarh Muslim University. He has published about 210 research articles in various international scientific journals, many book chapters, and dozens of edited books, many with Wiley-Scrivener.

Tariq Altalhi, PhD, is an associate professor in the Department of Chemistry at Taif University, Saudi Arabia. He received his doctorate degree from University of Adelaide, Australia in the year 2014 with Dean's Commendation for Doctoral Thesis Excellence. He has worked as head of the Chemistry Department at Taif university and Vice Dean of Science College. In 2015, one of his works was nominated for Green Tech awards from Germany, Europe's largest environmental and business prize, amongst top 10 entries. He has also co-edited a number of scientific books.

Mohammad Luqman, PhD, has more than 12 years of post-PhD experience in teaching, research, and administration. Currently, he is serving as an assistant professor of chemical engineering at Taibah University, Saudi Arabia. Moreover, he served as a post-doctoral fellow at Artificial Muscle Research Center, Konkuk University, South Korea, and he earned his PhD degree in the field of ionomers (Ion-containing Polymers), from Chosun University, South Korea. He has edited three books and published numerous scientific papers and book chapters. He is an editor for several journals, and he has been awarded several grants for academic research.

Jorddy Neves Cruz is a researcher at the Federal University of Pará and the Emilio Goeldi Museum. He has experience in multidisciplinary research in the areas of medicinal chemistry, drug design, extraction of bioactive compounds, extraction of essential oils, food chemistry and biological testing. He has published several research articles in scientific journals and is an associate editor of the Journal of Medicine.


Invest in the future of the planet by delving into this comprehensive guide on hydrogen energy, a critical solution for sustainable power, and gain the knowledge to contribute to this revolutionary field. Hydrogen energy has emerged as one of the most promising solutions to the energy and environmental challenges of the 21st century. As we look for sustainable and clean alternatives to replace fossil fuels, hydrogen stands out not only for its abundance but also for its potential to revolutionize diverse sectors such as transport, industry, and energy generation. However, for this revolution to become a reality, a comprehensive and interdisciplinary understanding of the technologies and methods related to the production, storage, distribution, and utilization of hydrogen is essential. The subject of hydrogen energy production and fuel generation is closely linked to the broader goals of sustainability, energy transition, and climate change mitigation. The development of efficient and cost-effective methods to produce hydrogen from renewable sources, such as electrolysis powered by renewable electricity, contributes to the shift towards a green energy economy. Additionally, the integration of hydrogen with renewable energy systems enables the storage and utilization of intermittent renewable sources, enhancing the reliability and stability of the grid. This book encompasses principles and advancements in chemistry, physics, materials science, engineering, and environmental sciences. This interdisciplinary approach fosters collaboration and knowledge exchange, leading to breakthroughs in hydrogen production, storage, and utilization. In terms of industry development, the book addresses the growing demand for alternative energy sources in sectors such as transportation, industry, and power generation. As the world moves towards decarbonization and reducing reliance on fossil fuels, hydrogen has emerged as a promising solution due to its high energy density and potential for zero-emission operations. The book explores the practical applications of hydrogen energy, including fuel cell vehicles, hydrogen-powered industrial processes, and integrated energy systems. By addressing this comprehensive context, the book serves as a valuable resource for researchers, professionals, and policymakers seeking to understand and contribute to the advancement of this critical field.
Erscheint lt. Verlag 10.9.2025
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Alternative Fuel • Biomass conversion • Clean Energy • electrolysis • Energy Storage • Fuel cells • fuel generation • Hydrogen Energy • Hydrogen Production • hydrogen storage • Microbial electrolysis • Photoelectrochemical Processes • renewable energy • Solar-Driven Water Splitting • Sustainable energy
ISBN-10 1-394-24853-9 / 1394248539
ISBN-13 978-1-394-24853-7 / 9781394248537
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kommunikationssysteme mit EIB/KNX, LON, BACnet und Funk

von Thomas Hansemann; Christof Hübner; Kay Böhnke

eBook Download (2025)
Hanser (Verlag)
CHF 38,95
Verfahren zur Berechnung elektrischer Energieversorgungsnetze

von Karl Friedrich Schäfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 107,45