Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Fabrication Engineer

Buch | Softcover
82 Seiten
2012 | 4th edition
Oxford University Press (Verlag)
978-0-19-986121-7 (ISBN)
CHF 47,10 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
In the education area, Professor Campbell leads the University of Minnesota's participation in Nano-Link, an NSF sponsored regional center for nanotechnology education at the AAS level. He has designed and implemented a one-semester capstone experience Microelectronic Fabrication and created the text book as a result. Designed for advanced undergraduate or first-year graduate courses in semiconductor or microelectronic fabrication, this fourth
edition of Fabrication Engineering at the Micro- and Nanoscale provides a thorough and accessible introduction to all fields of micro and nano fabrication. The text covers the entire basic unit
processes used to fabricate integrated circuits and other devices.

Professor of Electrical and Computer Engineering at the University of Minnesota, Distinguished Professor of the Institute of Technology, Director of the Nanofabrication Center, and Director of the Center for Nanostructure Applications. He has extensive experience in both academia and industry in microelectronic processing. His current research interests include the application of semiconductor nanoparticles for high performance electronic and optoelectronic devices, advanced materials, novel sensors and transistor structures, and various applications of MEMS.

Preface xiii
Part I Overview and Materials 1
Chapter 1 An Introduction to Microelectronic Fabrication 3
1.1 Microelectronic Technologies: A Simple Example 5
1.2 Unit Processes and Technologies 7
1.3 A Roadmap for the Course 8
1.4 Summary 9
Chapter 2 Semiconductor Substrates 10
2.1 Phase Diagrams and Solid Solubility° 10
2.2 Crystallography and Crystal Structure° 14
2.3 Crystal Defects 16
2.4 Czochralski Growth 22
2.5 Bridgman Growth of GaAs 30
2.6 Float Zone Growth 32
2.7 Wafer Preparation and Specifications 33
2.8 Summary and Future Trends 35
Problems 35
References 36
Part II Unit Processes I: Hot Processing and Ion Implantation 41
Chapter 3 Diffusion 43
3.1 Fick's Diffusion Equation in One Dimension 43
3.2 Atomistic Models of Diffusion 45
3.3 Analytic Solutions of Fick's Law 50
3.4 Diffusion Coefficients for Common Dopants 53
3.5 Analysis of Diffused Profiles 56
3.6 Diffusion in SiO2 62
3.7 Simulations of Diffusion Profiles 64
3.8 Summary 69
Problems 69
References 71
Chapter 4 Thermal Oxidation 74
4.1 The Deal-Grove Model of Oxidation 74
4.2 The Linear and Parabolic Rate Coefficients 77
4.3 The Initial Oxidation Regime 81
4.4 The Structure of SiO2 83
4.5 Oxide Characterization 84
4.6 The Effects of Dopants During Oxidation and Polysilicon Oxidation 91
4.7 Silicon Oxynitrides 94
4.8 Alternative Gate Insulators+ 95
4.9 Oxidation Systems 97
4.10 Numeric Oxidations+ 99
4.11 Summary 101
Problems 101
References 103
Chapter 5 Ion Implantation 107
5.1 Idealized Ion Implantation Systems 108
5.2 Coulomb Scattering° 113
5.3 Vertical Projected Range 114
5.4 Channeling and Lateral Projected Range 120
5.5 Implantation Damage 122
5.6 Shallow Junction Formation+ 126
5.7 Buried Dielectrics+ 128
5.8 Ion Implantation Systems: Problems and Concerns 130
5.9 Numerical Implanted Profiles 132
5.10 Summary 134
Problems 134
References 136
Chapter 6 Rapid Thermal Processing 140
6.1 Gray Body Radiation, Heat Exchange, and Optical Absorption° 141
6.2 High Intensity Optical Sources and Chamber Design 144
6.3 Temperature Measurement 147
6.4 Thermoplastic Stress° 151
6.5 Rapid Thermal Activation of Impurities 152
6.6 Rapid Thermal Processing of Dielectrics 154
6.7 Silicidation and Contact Formation 155
6.8 Alternative Rapid Thermal Processing Systems 156
6.9 Summary 157
Problems 157
References 158
Part III Unit Processes 2: Pattern Transfer 163
Chapter 7 Optical Lithography 165
7.1 Lithography Overview 165
7.2 Diffraction° 169
7.3 The Modulation Transfer Function and Optical Exposures 172
7.4 Source Systems and Spatial Coherence 175
7.5 Contact/Proximity Printers 179
7.6 Projection Printers 183
7.7 Advanced Mask Concepts+ 189
7.8 Surface Reflections and Standing Waves 192
7.9 Alignment 194
7.10 Summary 195
Problems 195
References 196
Chapter 8 Photoresists 199
8.1 Photoresist Types 199
8.2 Organic Materials and Polymers° 200
8.3 Typical Reactions of DQN Positive Photoresist 202
8.4 Contrast Curves 204
8.5 The Critical Modulation Transfer Function 207
8.6 Applying and Developing Photoresist 207
8.7 Second-Order Exposure Effects 211
8.8 Advanced Photoresists and Photoresist Processes+ 215
8.9 Summary 219
Problems 219
References 221
Chapter 9 Nonoptical Lithographic Techniques+ 224
9.1 Interactions of High Energy Beams with Matter° 225
9.2 Direct-Write Electron Beam Lithography Systems 227
9.3 Direct-Write Electron Beam Lithography: Summary and Outlook 233
9.4 X-ray and EUV Sources° 235
9.5 Proximity X-ray Exposure Systems 238
9.6 Membrane Masks for Proximity X-ray 240
9.7 EUV Lithography 242
9.8 Projection Electron Beam Lithography (SCALPEL) 244
9.9 E-beam and X-ray Resists 245
9.10 Radiation Damage in MOS Devices 247
9.11 Soft Lithography and Nanoimprint Lithography 249
9.12 Summary 252
Problems 252
References 253
Chapter 10 Vacuum Science and Plasmas 259
10.1 The Kinetic Theory of Gases° 259
10.2 Gas Flow and Conductance 262
10.3 Pressure Ranges and Vacuum Pumps 265
10.4 Vacuum Seals and Pressure Measurement 271
10.5 The DC Glow Discharge° 273
10.6 RF Discharges 275
10.7 High Density Plasmas 277
10.8 Summary 280
Problems 280
References 282
Chapter 11 Etching 283
11.1 Wet Etching 284
11.2 Chemical Mechanical Polishing 289
11.3 Basic Regimes of Plasma Etching 291
11.4 High Pressure Plasma Etching 292
11.5 Ion Milling 300
11.6 Reactive Ion Etching 303
11.7 Damage in Reactive Ion Etching+ 307
11.8 High Density Plasma (HDP) Etching 308
11.9 Liftoff 310
11.10 Summary 311
Problems 312
References 313
Part IV Unit Processes 3: Thin Films 321
Chapter 12 Physical Deposition: Evaporation and Sputtering 323
12.1 Phase Diagrams: Sublimation and Evaporation° 324
12.2 Deposition Rates 325
12.3 Step Coverage 329
12.4 Evaporator Systems: Crucible Heating Techniques 331
12.5 Multicomponent Films 334
12.6 An Introduction to Sputtering 335
12.7 Physics of Sputtering° 336
12.8 Deposition Rate: Sputter Yield 337
12.9 High Density Plasma Sputtering 339
12.10 Morphology and Step Coverage 341
12.11 Sputtering Methods 345
12.12 Sputtering of Specific Materials 346
12.13 Stress in Deposited Layers 349
12.14 Summary 350
Problems 350
References 352
Chapter 13 Chemical Vapor Deposition 356
13.1 A Simple CVD System for the Deposition of Silicon 356
13.2 Chemical Equilibrium and the Law of Mass Action° 358
13.3 Gas Flow and Boundary Layers° 361
13.4 Evaluation of the Simple CVD System 366
13.5 Atmospheric CVD of Dielectrics 367
13.6 Low Pressure CVD of Dielectrics and Semiconductors in Hot Wall Systems 368
13.7 Plasma-enhanced CVD of Dielectrics 373
13.8 Metal CVD+ 377
13.9 Atomic Layer Deposition 380
13.10 Electroplating Copper 382
13.11 Summary 384
Problems 384
References 385
Chapter 14 Epitaxial Growth 391
14.1 Wafer Cleaning and Native Oxide Removal 392
14.2 The Thermodynamics of Vapor Phase Growth 396
14.3 Surface Reactions 400
14.4 Dopant Incorporation 401
14.5 Defects in Epitaxial Growth 402
14.6 Selective Growth° 405
14.7 Halide Transport GaAs Vapor Phase Epitaxy 405
14.8 Incommensurate and Strained Layer Heteroepitaxy 406
14.9 Metal Organic Chemical Vapor Deposition (MOCVD) 409
14.10 Advanced Silicon Vapor Phase Epitaxial Growth Techniques 414
14.11 Molecular Beam Epitaxy Technology 417
14.12 BCF Theory+ 422
14.13 Gas Source MBE and Chemical Beam Epitaxy+ 427
14.14 Summary 428
Problems 428
References 429
Part V Process Integration 435
Chapter 15 Device Isolation, Contacts, and Metallization 437
15.1 Junction and Oxide Isolation 437
15.2 LOCOS Methods 440
15.3 Trench Isolation 443
15.4 Silicon-on-Insulator Isolation Techniques 446
15.5 Semi-insulating Substrates 447
15.6 Schottky Contacts 449
15.7 Implanted Ohmic Contacts 453
15.8 Alloyed Contacts 456
15.9 Multilevel Metallization 457
15.10 Planarization and Advanced Interconnect 462
15.11 Summary 467
Problems 468
References 469
Chapter 16 CMOS Technologies 475
16.1 Basic Long-Channel Device Behavior 475
16.2 Early MOS Technologies 477
16.3 The Basic 3-µm Technology 478
16.4 Device Scaling 483
16.5 Hot Carrier Effects and Drain Engineering 490
16.6 Latchup 493
16.7 Shallow Source/Drains and Tailored Channel Doping 496
16.8 The Universal Curve and Advanced CMOS 498 16.9 A Nanoscale CMOS Process 16.10 Nonplanar CMOS
16.11 Summary 500
Problems 501
References 503
Chapter 17 Other Transistor Technologies 509
17.1 Basic MESFET Operation 509
17.2 Basic MESFET Technology 510
17.3 Digital Technologies 511
17.4 MMIC Technologies 515
17.5 MODFETs 518
17.6 Review of Bipolar Devices: Ideal and Quasi-ideal Behavior 519
17.7 Performance of BJTs 521
17.8 Early Bipolar Processes 523
17.9 Advanced Bipolar Processes 526
17.10 BiCMOS 533
17.11 Thin Film Transistors 536
17.12 Summary 538
Problems 539
References 541
Chapter 18 Optoelectronic and Solar Technologies 547
18.1 Optoelectronic Devices Overview 547
18.2 Direct-Gap Inorganic LEDs 549
18.3 Polymer/Organic Light-Emitting Diodes 551
18.4 Lasers 553 18.5 Photovoltaic Devices Overview 18.6 Silicon Based Photovoltaic Device Fabrication 18.7 Other Photovoltaic Technologies
18.8 Summary 554
References 554
Chapter 19 MEMS 555
19.1 Fundamentals of Mechanics 556
19.2 Stress in Thin Films 558
19.3 Mechanical-to-Electrical Transduction 559
19.4 Mechanics of Common MEMS Devices 563
19.5 Bulk Micromachining Etching Techniques 567
19.6 Bulk Micromachining Process Flow 575
19.7 Surface Micromachining Basics 579
19.8 Surface Micromachining Process Flow 583
19.9 MEMS Actuators 586
19.10 High Aspect Ratio Microsystems Technology (HARMST) 591 19.11?Microfluidics
19.12 Summary 593
Problems 593
References 595
Chapter 20 Integrated Circuit Manufacturing 599
20.1 Yield Prediction and Yield Tracking 600
20.2 Particle Control 605
20.3 Statistical Process Control 607
20.4 Full Factorial Experiments and ANOVA 609
20.5 Design of Experiments 612
20.6 Computer-integrated Manufacturing 615
20.7 Summary 617
Problems 618
References 618
Appendix I. Acronyms and Common Symbols 620
Appendix II. Properties of Selected Semiconductor Materials 626
Appendix III. Physical Constants 627
Appendix IV. Conversion Factors 629
Appendix V. Some Properties of the Error Function 632
Appendix VI. F Values 636
Index 639

Erscheinungsdatum
Verlagsort Oxford
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Luft- / Raumfahrttechnik
ISBN-10 0-19-986121-8 / 0199861218
ISBN-13 978-0-19-986121-7 / 9780199861217
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
CHF 67,20