Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Compact Heat Exchangers (eBook)

Analysis, Design and Optimization using FEM and CFD Approach
eBook Download: PDF
2018
John Wiley & Sons (Verlag)
978-1-119-42435-2 (ISBN)

Lese- und Medienproben

Compact Heat Exchangers - C. Ranganayakulu, Kankanhalli N. Seetharamu
Systemvoraussetzungen
107,99 inkl. MwSt
(CHF 105,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A comprehensive source of generalized design data for most widely used fin surfaces in CHEs

Compact Heat Exchanger Analysis, Design and Optimization: FEM and CFD Approach brings new concepts of design data generation numerically (which is more cost effective than generic design data) and can be used by design and practicing engineers more effectively. The numerical methods/techniques are introduced for estimation of performance deteriorations like flow non-uniformity, temperature non-uniformity, and longitudinal heat conduction effects using FEM in CHE unit level and Colburn j factors and Fanning friction f factors data generation method for various types of CHE fins using CFD. In addition, worked examples for single and two-phase flow CHEs are provided and the complete qualification tests are given for CHEs use in aerospace applications.

Chapters cover: Basic Heat Transfer; Compact Heat Exchangers; Fundamentals of Finite Element and Finite Volume Methods; Finite Element Analysis of Compact Heat Exchangers; Generation of Design Data by CFD Analysis; Thermal and Mechanical Design of Compact Heat Exchanger; and Manufacturing and Qualification Testing of Compact Heat Exchanger.

  • Provides complete information about basic design of Compact Heat Exchangers
  • Design and data generation is based on numerical techniques such as FEM and CFD methods rather than experimental or analytical ones
  • Intricate design aspects included, covering complete cycle of design, manufacturing, and qualification of a Compact Heat Exchanger
  • Appendices on basic essential fluid properties, metal characteristics, and derivation of Fourier series mathematical equation

Compact Heat Exchanger Analysis, Design and Optimization: FEM and CFD Approach is ideal for senior undergraduate and graduate students studying equipment design and heat exchanger design.



C. Ranganayakulu, PhD, is an Outstanding Scientist and Group Director (GS-ECS) in the Aeronautical Development Agency, Ministry of Defence, India. Dr. Ranganayakulu is an Alexander von Humboldt re-visiting researcher at Helmut Schmidt University, Hamburg, and Leibniz University, Hannover, Germany, and Visiting Researcher at UNISA, Johannesburg, South Africa.

K.N. Seetharamu, PhD, is a professor of Thermal Engineering at PES Institute of Technology, Bangalore, and is a member of the editorial board of a number of journals including the International Journal for Numerical Methods in Biomedical Engineering. He was a Professor of Mechanical Engineering at IIT Madras from 1980 to 1998.


A comprehensive source of generalized design data for most widely used fin surfaces in CHEs Compact Heat Exchanger Analysis, Design and Optimization: FEM and CFD Approach brings new concepts of design data generation numerically (which is more cost effective than generic design data) and can be used by design and practicing engineers more effectively. The numerical methods/techniques are introduced for estimation of performance deteriorations like flow non-uniformity, temperature non-uniformity, and longitudinal heat conduction effects using FEM in CHE unit level and Colburn j factors and Fanning friction f factors data generation method for various types of CHE fins using CFD. In addition, worked examples for single and two-phase flow CHEs are provided and the complete qualification tests are given for CHEs use in aerospace applications. Chapters cover: Basic Heat Transfer; Compact Heat Exchangers; Fundamentals of Finite Element and Finite Volume Methods; Finite Element Analysis of Compact Heat Exchangers; Generation of Design Data by CFD Analysis; Thermal and Mechanical Design of Compact Heat Exchanger; and Manufacturing and Qualification Testing of Compact Heat Exchanger. Provides complete information about basic design of Compact Heat Exchangers Design and data generation is based on numerical techniques such as FEM and CFD methods rather than experimental or analytical ones Intricate design aspects included, covering complete cycle of design, manufacturing, and qualification of a Compact Heat Exchanger Appendices on basic essential fluid properties, metal characteristics, and derivation of Fourier series mathematical equation Compact Heat Exchanger Analysis, Design and Optimization: FEM and CFD Approach is ideal for senior undergraduate and graduate students studying equipment design and heat exchanger design.

C. Ranganayakulu, PhD, is an Outstanding Scientist and Group Director (GS-ECS) in the Aeronautical Development Agency, Ministry of Defence, India. Dr. Ranganayakulu is an Alexander von Humboldt re-visiting researcher at Helmut Schmidt University, Hamburg, and Leibniz University, Hannover, Germany, and Visiting Researcher at UNISA, Johannesburg, South Africa. K.N. Seetharamu, PhD, is a professor of Thermal Engineering at PES Institute of Technology, Bangalore, and is a member of the editorial board of a number of journals including the International Journal for Numerical Methods in Biomedical Engineering. He was a Professor of Mechanical Engineering at IIT Madras from 1980 to 1998.

Title Page 5
Copyright Page 6
Contents 7
Preface 15
Series Preface 17
Chapter 1 Basic Heat Transfer 19
1.1 Importance of Heat Transfer 19
1.2 Heat Transfer Modes 20
1.3 Laws of Heat Transfer 21
1.4 Steady-State Heat Conduction 22
1.4.1 One-Dimensional Heat Conduction 23
1.4.2 Three-Dimensional Heat Conduction Equation 25
1.4.3 Boundary and Initial Conditions 28
1.5 Transient Heat Conduction Analysis 29
1.5.1 Lumped Heat Capacity System 29
1.6 Heat Convection 31
1.6.1 Flat Plate in Parallel Flow 32
1.6.1.1 Laminar Flow Over an Isothermal Plate 32
1.6.1.2 Turbulent Flow over an Isothermal Plate 34
1.6.1.3 Boundary Layer Development Over Heated Plate 35
1.6.2 Internal Flow 36
1.6.2.1 Hydrodynamic Considerations 37
1.6.2.2 Flow Conditions 37
1.6.2.3 Mean Velocity 38
1.6.2.4 Velocity Profile in the Fully Developed Region 39
1.6.3 Forced Convection Relationships 41
1.7 Radiation 46
1.7.1 Radiation – Fundamental Concepts 48
1.8 Boiling Heat Transfer 53
1.8.1 Flow Boiling 54
1.9 Condensation 56
1.9.1 Film Condensation 57
1.9.2 Drop-wise Condensation 57
Nomenclature 58
Greek Symbols 60
Subscripts 60
References 61
Chapter 2 Compact Heat Exchangers 63
2.1 Introduction 63
2.2 Motivation for Heat Transfer Enhancement 64
2.3 Comparison of Shell and Tube Heat Exchanger 66
2.4 Classification of Heat Exchangers 67
2.5 Heat Transfer Surfaces 69
2.5.1 Rectangular Plain Fin 70
2.5.2 Louvred-Fin 70
2.5.3 Strip-Fin or Lance and Offset Fin 71
2.5.4 Wavy-Fin 71
2.5.5 Pin-Fin 71
2.5.6 Rectangular Perforated Fin 72
2.5.7 Triangular Plain Fin 72
2.5.8 Triangular Perforated Fin 72
2.5.9 Vortex Generator 73
2.6 Heat Exchanger Analysis 74
2.6.1 Use of the Log Mean Temperature Difference 76
2.6.1.1 Parallel-Flow Heat Exchanger 77
2.6.1.2 Counter-Flow Heat Exchanger 80
2.6.2 Effectiveness-NTU Method 83
2.6.3 Effectiveness-NTU Relations 87
2.6.4 Evaluation of Heat Transfer and Pressure Drop Data 91
2.6.4.1 Flow Properties and Dimensionless Numbers 91
2.6.4.2 Data Curves for j and f 93
2.7 Plate-Fin Heat Exchanger 95
2.7.1 Description 95
2.7.2 Geometric Characteristics 96
2.7.3 Correlations for Offset Strip Fin (OSF) Geometry 99
2.8 Finned-Tube Heat Exchanger 99
2.8.1 Geometrical Characteristics 100
2.8.2 Correlations for Circular-Finned-Tube Geometry 102
2.8.3 Pressure Drop 103
2.8.4 Correlations for Louvred Plate-Fin Flat-Tube Geometry 104
2.8.5 Louvre-Fin-Type Flat-Tube Plate-Fin Heat Exchangers 108
2.8.5.1 Geometric Characteristics 109
2.8.5.2 Correlations for Louvre Fin Geometry 111
2.9 Plate-Fin Exchangers Operating Limits 111
2.10 Plate-Fin Exchangers – Monitoring and Maintenance 112
2.10.1 Advantage 113
2.10.2 Disadvantages 113
Nomenclature 113
Greek Symbols 115
Subscripts 116
References 116
Chapter 3 Fundamentals of Finite Element and Finite Volume Methods 119
3.1 Introduction 119
3.2 Finite Element Method 119
3.2.1 Finite Element Form of the Conduction Equation 121
3.2.2 Elements and Shape Functions 122
3.2.3 Two-Dimensional Linear Triangular Elements 127
3.2.3.1 Area Coordinates 130
3.2.4 Formulation for the Heat Conduction Equation 132
3.2.4.1 Variational Approach 133
3.2.4.2 Galerkin Method 136
3.2.5 Requirements for Interpolation Functions 137
3.2.6 Plane Wall with a Heat Source – Solution by Quadratic Element 146
3.2.7 Two-Dimensional Plane Problems 148
3.2.7.1 Triangular Elements 149
3.2.8 Finite Element Method-Transient Heat Conduction 159
3.2.8.1 Galerkin Method for Transient Heat Conduction 160
3.2.9 Time Discretization using the Finite Element Method 163
3.2.10 Finite Element Method for Heat Exchangers 164
3.2.10.1 Governing Equations 164
3.2.10.2 Finite Element Formulation 166
3.3 Finite Volume Method 182
3.3.1 Navier–Stokes Equations 183
3.3.1.1 Conservation of Momentum 186
3.3.1.2 Energy Equation 189
3.3.1.3 Non-Dimensional Form of the Governing Equations 191
3.3.1.4 Forced Convection 192
3.3.1.5 Natural Convection (Buoyancy-Driven Convection) 193
3.3.1.6 Mixed Convection 195
3.3.1.7 Transient Convection – Diffusion Problem 195
3.3.2 Boundary Conditions 196
Nomenclature 196
Greek Symbols 197
Subscripts 197
References 197
Chapter 4 Finite Element Analysis of Compact Heat Exchangers 201
4.1 Introduction 201
4.2 Finite Element Discretization 202
4.3 Governing Equations 202
4.4 Finite Element Formulation 207
4.4.1 Cross Flow Plate-Fin Heat Exchanger 207
4.4.2 Counter Flow/Parallel Flow Plate-Fin Heat Exchangers 211
4.4.3 Cross Flow Tube-Fin Heat Exchanger 212
4.5 Longitudinal Wall Heat Conduction Effects 213
4.5.1 General 213
4.5.2 Validation 216
4.5.3 Cross Flow Plate-Fin Heat Exchanger 217
4.5.4 Cross Flow Tube-Fin Heat Exchanger 218
4.5.5 Parallel Flow Heat Exchanger 224
4.5.6 Counter Flow Heat Exchanger 224
4.5.7 Relative Comparison of Results 225
4.6 Inlet Flow Non-Uniformity Effects 225
4.6.1 General 225
4.6.2 Validation 232
4.6.3 Cross Flow Plate-Fin Heat Exchanger 233
4.6.4 Cross Flow Tube-Fin Heat Exchanger 239
4.6.5 Pressure Drop Variations – Flow Non-Uniformity 242
4.7 Inlet Temperature Non-Uniformity Effects 246
4.7.1 General 246
4.7.2 Validation 247
4.7.3 Cross Flow Plate-Fin Heat Exchanger 247
4.7.4 Cross Flow Tube-Fin Heat Exchanger 251
4.8 Combined Effects of Longitudinal Heat Conduction, Inlet Flow Non-Uniformity and Temperature Non-Uniformity 253
4.8.1 General 253
4.8.2 Validation 255
4.8.3 Combined Effects of Longitudinal Wall Heat Conduction and Inlet Flow Non-Uniformity 256
4.8.3.1 Cross Flow Plate-Fin Heat Exchanger – Combined Effects (LHC, FN) 256
4.8.3.2 Cross Flow Tube-Fin Heat Exchanger – Combined Effects (LHC, FN) 261
4.8.4 Combined Effects of Longitudinal Wall Heat Conduction, Inlet Flow Non-Uniformity and Temperature Non-Uniformity 265
4.8.4.1 Cross Flow Plate-Fin Heat Exchanger – Combined Effects (LHC, FN, TN) 269
4.8.4.2 Cross Flow Tube-Fin Heat Exchanger – Combined Effects (LHC, FN, TN) 275
4.8.5 Combined Effects of Inlet Flow Non-Uniformity and Temperature Non-Uniformity 278
4.8.5.1 Cross Flow Plate-Fin Heat Exchanger 281
4.8.5.2 Cross Flow Tube-Fin Heat Exchanger 285
4.9 FEM Analysis of Micro Compact Heat Exchangers 291
4.9.1 Governing Equations and Finite Element Formulation 295
4.10 Influence of Heat Conduction from Horizontal Tube in Pool Boiling 300
4.10.1 General 300
4.10.2 Governing Equations 302
4.10.3 Finite Element Analysis 303
4.10.3.1 One-Dimensional Case 304
4.10.3.2 Two-Dimensional Case (Axial and Radial) 304
4.10.3.3 Two-Dimensional Case (Azimuthal and Radial) 305
4.10.3.4 Three-Dimensional Case 305
4.10.4 Results 306
4.10.4.1 One-Dimensional Heat Conduction Case 308
4.10.4.2 Two-Dimensional Heat Conduction Case 310
4.10.4.3 Three-Dimensional Heat Conduction Case 311
4.11 Closure 316
Nomenclature 317
Greek Symbols 319
Subscripts 320
References 321
Chapter 5 Generation of Design Data – Finite Volume Analysis 325
5.1 Introduction 325
5.2 Plate Fin Heat Exchanger 325
5.3 Heat Transfer Surfaces 326
5.3.1 Lance and Offset Fins 326
5.3.2 Wavy Fins 326
5.3.3 Rectangular Plain Fins 327
5.3.4 Rectangular Perforated Fins 328
5.3.5 Triangular Plain Fins 329
5.3.6 Triangular Perforated Fins 329
5.4 Performance Characteristic Curves 329
5.4.1 Working Fluids 330
5.5 CFD Analysis 330
5.5.1 Pre-Processor 331
5.5.2 Main Solver 331
5.5.3 Post-Processor 331
5.5.4 Errors and Uncertainty in CFD Modelling 331
5.6 CFD Approach 332
5.6.1 Mathematical Model 333
5.6.2 Governing Equations 333
5.6.3 Assumptions 334
5.6.4 Boundary Conditions 334
5.6.4.1 Inlet Boundary Conditions 335
5.6.4.2 Outlet Boundary Conditions 335
5.6.4.3 Wall Boundary Conditions 336
5.6.4.4 Constant Pressure Boundary Condition 336
5.6.4.5 Symmetric Boundary Condition 336
5.6.4.6 Periodic Boundary Condition 336
5.6.5 Turbulence Models 336
5.7 Numerical Simulation 337
5.7.1 Transient Analysis 338
5.7.1.1 Data Reduction and Validation 339
5.7.2 Steady State Analysis 346
5.7.2.1 Wavy Fin 346
5.7.2.2 Offset Fins 352
5.7.2.3 Rectangular Plain Fin 355
5.7.2.4 Rectangular Perforated Fin 362
5.7.2.5 Triangular Plain Fin Surface 368
5.7.2.6 Triangular Perforated Fin Surface 374
5.7.3 Flow Non-Uniformity Analysis 380
5.7.4 Characterization of CHE Fins for Two-Phase Flow 384
5.7.4.1 Experimental Set-Up 385
5.7.4.2 Brazed Test Core 386
5.7.4.3 Boiling Heat Transfer Coefficient 388
5.7.4.4 Two-Phase Condensation 392
5.7.5 Estimation of Endurance Life of Compact Heat Exchanger 395
5.7.5.1 Computational Analysis 396
5.7.5.2 CFD Analysis of CHE 396
5.7.5.3 Endurance Life Estimation 400
5.7.5.4 Fatigue Life Estimation 400
5.7.5.5 Effect of Creep 401
5.7.5.6 Results of Endurance Life 402
5.8 Closure 403
Nomenclature 406
Greek Symbols 409
Subscripts 409
References 410
Chapter 6 Thermal and Mechanical Design of Compact Heat Exchanger 417
6.1 Introduction 417
6.2 Basic Concepts and Initial Size Assessment 418
6.2.1 Effectiveness Method 418
6.2.2 Inverse Relationships 421
6.2.3 LMTD Method 421
6.3 Overall Conductance 425
6.3.1 Fin Efficiency and Surface Effectiveness 427
6.4 Pressure Drop Analysis 428
6.4.1 Single Phase Pressure Drop 428
6.4.2 Two-Phase Pressure Loss 431
6.4.2.1 Two-Phase Frictional Losses 432
6.4.2.2 Two-Phase Momentum Losses – Change of Quality 434
6.4.2.3 Two-Phase Gravitational Losses – Upward Flow (Boiling) 434
6.4.2.4 Downward Flow (Condensation) 435
6.5 Two-Phase Heat Transfer 435
6.5.1 Condensation 436
6.5.1.1 All Liquid Heat Transfer Coefficient 436
6.5.1.2 Correction for the Vapour Volume 436
6.5.1.3 Correction for the Multicomponent Streams 437
6.5.2 Evaporation 437
6.5.2.1 Reynolds Number Calculation 438
6.5.2.2 Determine j and f Factors 438
6.5.2.3 Heat Transfer Coefficient Calculation for Quality between 0 and 0.95 438
6.5.2.4 Heat Transfer Coefficient for High and Low Values of Quality 439
6.6 Useful Relations for Surface and Core Geometry 439
6.7 Core Design (Mechanical Design) 442
6.7.1 Fins 442
6.7.2 Separating/Parting Sheets 442
6.7.3 Cap Sheets 442
6.7.4 Headers 442
6.7.5 Supports 443
6.7.6 Fin Minimum Thickness 443
6.7.7 Parting/Separating and Cap Sheets Minimum Thickness 444
6.7.8 Side-Bar Minimum Thickness 444
6.7.9 Headers Minimum Thickness 445
6.8 Procedure for Sizing a Heat Exchanger 445
6.9 Design Procedure of a Typical Compact Heat Exchanger 448
6.10 Worked Examples 452
6.10.1 Example 1: Direct Transfer Heat Exchanger 452
6.10.2 Example 2: Two-Pass Cross Flow Heat Exchanger 460
6.10.3 Example 3: Compact Evaporator Design 468
6.10.4 Example 4: Compact Condenser Design 469
Nomenclature 472
Greek Symbols 474
Subscripts 475
References 475
Chapter 7 Manufacturing and Qualification Testing of Compact Heat Exchangers 479
7.1 Construction of Brazed Plate-Fin Heat Exchanger 479
7.2 Construction of Diffusion-Bonded Plate-Fin Heat Exchanger 479
7.3 Brazing 482
7.3.1 Operations in Brazing 483
7.3.2 Brazing Filler Metals 487
7.3.3 Brazing Processes 487
7.3.4 Vacuum Brazing 488
7.3.4.1 Brazing of Aluminium and its Alloys 488
7.3.4.2 Brazing of Stainless Steels 492
7.3.4.3 Brazing of Super Alloys 493
7.3.5 Vacuum Furnace Brazing Cycles 494
7.3.5.1 Vacuum Level during Brazing 495
7.3.5.2 Cooling Gases 495
7.3.5.3 Post Brazing Inspection 496
7.4 Influence of Brazing on Heat Transfer and Pressure Drop 496
7.5 Testing and Qualification of Compact Heat Exchangers 497
7.5.1 Acceptance Tests 498
7.5.1.1 Thermal Performance and Pressure Drop Test 498
7.5.1.2 Pressure Drop Test 502
7.5.1.3 Leakage Test 502
7.5.1.4 Proof Pressure Test 502
7.5.2 Qualification Tests 503
7.5.2.1 Vibration Test 503
7.5.2.2 Combined Pressure, Temperature and Flow Cycling 505
7.5.2.3 Experimental Evaluation of Endurance Life of Compact Heat Exchanger 506
7.5.2.4 Pressure Cycling Test 508
7.5.2.5 Thermal Shock Test 509
7.5.2.6 Acceleration Test 509
7.5.2.7 Shock Test 509
7.5.2.8 Humidity Test 510
7.5.2.9 Fungus Test 511
7.5.2.10 Salt Fog Test 511
7.5.2.11 Freeze and Thaw 511
7.5.2.12 Rain Resistance 511
7.5.2.13 Sand and Dust 512
7.5.2.14 Shock Test (Arrestor Landing) 512
7.5.2.15 Gunfire Vibration Test 512
7.5.2.16 Burst Pressure Test 513
References 514
Appendices 515
A.1 Derivation of Fourier Series Mathematical Equation 515
A.2 Molar, Gas and Critical Properties 519
A.3 Thermo-Physical Properties of Gases at Atmospheric Pressure 520
A.4 Properties of Solid Materials 527
A.5 Thermo-Physical Properties of Saturated Fluids 533
A.6 Thermo-Physical Properties of Saturated Water 536
A.7 Solar Radiative Properties of Selected Materials 539
A.8 Thermo-Physical Properties of Fluids 540
References 542
Index 543
EULA 546

Erscheint lt. Verlag 2.2.2018
Reihe/Serie Wiley-ASME Press Series
Wiley-ASME Press Series
Wiley-ASME Press Series
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Aeronautic & Aerospace Engineering • CHEs and Longitudinal Heat Conduction (LHC), Flow non-uniformity (FN) and Temperature non-uniformity (TN) effects in CHEs • CHEs and new numerical data • CHEs for aerospace • CHEs for automobiles • CHEs process plants • Colburn factor j • compact heat exchangers for aircraft applications • Computational / Numerical Methods • environmental control systems • Fanning factor f data • FEM and CFD Approach to compact heat exchanger analysis • heat design • heat exchanger design • <i>Compact Heat Exchanger Analysis, Design and Optimization: FEM and CFD Approach</i></p> • <p>Compact Heat Exchangers (CHEs) • Luft- u. Raumfahrttechnik • Maschinenbau • mechanical engineering • numerical methods for heat and fluid flow • Rechnergestützte / Numerische Verfahren im Maschinenbau • thermodynamics • Thermodynamik
ISBN-10 1-119-42435-6 / 1119424356
ISBN-13 978-1-119-42435-2 / 9781119424352
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kommunikationssysteme mit EIB/KNX, LON, BACnet und Funk

von Thomas Hansemann; Christof Hübner; Kay Böhnke

eBook Download (2025)
Hanser (Verlag)
CHF 38,95
Verfahren zur Berechnung elektrischer Energieversorgungsnetze

von Karl Friedrich Schäfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 107,45