Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Wireless Sensor Systems for Extreme Environments (eBook)

Space, Underwater, Underground, and Industrial

Habib F. Rashvand, Ali Abedi (Herausgeber)

eBook Download: PDF
2017
John Wiley & Sons (Verlag)
978-1-119-12647-8 (ISBN)

Lese- und Medienproben

Wireless Sensor Systems for Extreme Environments -
Systemvoraussetzungen
108,99 inkl. MwSt
(CHF 106,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Provides unique coverage of wireless sensor system applications in space, underwater, underground, and extreme industrial environments in one volume

This book covers the challenging aspects of wireless sensor systems and the problems and conditions encountered when applying them in outer space, under the water, below the ground, and in extreme industrial environments. It explores the unique aspects of designs and solutions that address those problems and challenges, and illuminates the connections, similarities, and differences between the challenges and solutions in those various environments.

The creation of Wireless Sensor Systems for Extreme Environments is a response to the spread of wireless sensor technology into fields of health, safety, manufacturing, space, environmental, smart cities, advanced robotics, surveillance, and agriculture. It is the first of its kind to present, in a single reference, the unique aspects of wireless sensor system design, development, and deployment in such extreme environments-and to explore the similarities and possible synergies between them. The application of wireless sensor systems in these varied environments has been lagging dramatically behind their application in more conventional environments, making this an especially relevant book for investigators and practitioners in all of these areas.

Wireless Sensor Systems for Extreme Environments is presented in five parts that cover:

  • Wireless Sensor Systems for Extreme Environments-Generic Solutions
  • Space WSS Solutions and Applications
  • Underwater and Submerged WSS Solutions
  • Underground and Confined Environments WSS Solutions
  • Industrial and Other WSS Solutions

This book is a welcome guide for researchers, post-graduate students, engineers and scientists who design and build operational and environmental control systems, emergency response systems, and situational awareness systems for unconventional environments.



Habib F. Rashvand is Professor of Networks, Systems & Protocols and Director of Advanced Communication Systems, University of Warwick, School of Engineering, UK.

Dr. Ali Abedi is Professor of Electrical and Computer Engineering and Director of Center Undergraduate Research (CUGR) at University of Maine. He has a joint appointment at the School of Computing and Information Sciences.


Provides unique coverage of wireless sensor system applications in space, underwater, underground, and extreme industrial environments in one volume This book covers the challenging aspects of wireless sensor systems and the problems and conditions encountered when applying them in outer space, under the water, below the ground, and in extreme industrial environments. It explores the unique aspects of designs and solutions that address those problems and challenges, and illuminates the connections, similarities, and differences between the challenges and solutions in those various environments. The creation of Wireless Sensor Systems for Extreme Environments is a response to the spread of wireless sensor technology into fields of health, safety, manufacturing, space, environmental, smart cities, advanced robotics, surveillance, and agriculture. It is the first of its kind to present, in a single reference, the unique aspects of wireless sensor system design, development, and deployment in such extreme environments and to explore the similarities and possible synergies between them. The application of wireless sensor systems in these varied environments has been lagging dramatically behind their application in more conventional environments, making this an especially relevant book for investigators and practitioners in all of these areas. Wireless Sensor Systems for Extreme Environments is presented in five parts that cover: Wireless Sensor Systems for Extreme Environments Generic Solutions Space WSS Solutions and Applications Underwater and Submerged WSS Solutions Underground and Confined Environments WSS Solutions Industrial and Other WSS Solutions This book is a welcome guide for researchers, post-graduate students, engineers and scientists who design and build operational and environmental control systems, emergency response systems, and situational awareness systems for unconventional environments.

Habib F. Rashvand is Professor of Networks, Systems & Protocols and Director of Advanced Communication Systems, University of Warwick, School of Engineering, UK. Dr. Ali Abedi is Professor of Electrical and Computer Engineering and Director of Center Undergraduate Research (CUGR) at University of Maine. He has a joint appointment at the School of Computing and Information Sciences.

Cover 1
Title Page 5
Copyright 6
Contents 9
List of Contributors 21
Preface 25
Part I Wireless Sensor Systems for Extreme Environments-Generic Solutions 27
Chapter 1 Wireless Sensor Systems for Extreme Environments 29
1.1 Introduction 29
1.2 Wireless Sensor Systems for Space and other Extreme Environments 30
1.2.1 Definitions 30
1.2.2 Networking in Space and Extreme Environments 31
1.2.3 Node Synchronization in SEEs 31
1.2.4 Spectrum Sharing in SEEs 31
1.2.5 Energy Aspects in SEE 32
1.3 Chapter Abstracts 32
1.3.1 Abstract of Chapter 2 32
1.3.2 Abstract of Chapter 3 33
1.3.3 Abstract of Chapter 4 33
1.3.4 Abstract of Chapter 5 34
1.3.5 Abstract of Chapter 6 35
1.3.6 Abstract of Chapter 7 35
1.3.7 Abstract of Chapter 8 36
1.3.8 Abstract of Chapter 9 37
1.3.9 Abstract of Chapter 10 37
1.3.10 Abstract of Chapter 11 38
1.3.11 Abstract of Chapter 12 39
1.3.12 Abstract of Chapter 13 39
1.3.13 Abstract of Chapter 14 40
1.3.14 Abstract of Chapter 15 40
1.3.15 Abstract of Chapter 16 41
1.3.16 Abstract of Chapter 17 42
1.3.17 Abstract of Chapter 18 42
1.3.18 Abstract of Chapter 19 43
1.3.19 Abstract of Chapter 20 43
1.3.20 Abstract of Chapter 21 44
Reference 45
Chapter 2 Feedback Control Challenges with Wireless Networks in Extreme Environments 47
2.1 Introduction 47
2.2 Controllers in Extreme Environments 48
2.2.1 Case Study: Wireless Sensor Networks in Extreme Environments 48
2.3 System Dynamics and Control Design Fundamentals 50
2.3.1 System Dynamics 52
2.3.2 Classical Control System Design 56
2.4 Feedback Control Challenges when using Wireless Networks 58
2.4.1 Approximated Model of Delay 59
2.4.2 Effect of Delay on the Stability of a First-order System 60
2.4.2.1 Multi-sensor Systems 62
2.5 Effect of Delay on the Transient Response of a Second-order System 64
2.6 Discussion 68
2.7 Summary 68
References 69
Chapter 3 Optimizing Lifetime and Power Consumption for Sensing Applications in Extreme Environments 71
3.1 Introduction 71
3.1.1 Mathematical Notation 72
3.2 Overview and Technical System Description 72
3.3 Power and Lifetime Optimization 74
3.3.1 The Optimization Problem 75
3.3.2 Theoretical and Practical Solutions 76
3.3.3 More Practical Solutions 78
3.4 Visualization and Numerical Results 80
3.4.1 Comparison of (3.14) with (3.13) 80
3.4.2 Comparison of (3.16) with (3.13) and (3.14) 83
3.5 Application of Power Control in Extreme Environments 84
3.6 Summary 88
References 89
Chapter 4 On Improving Connectivity-based Localization in Wireless Sensor Networks 91
4.1 Introduction 91
4.2 Connectivity-based Localization in One-hop Networks 92
4.2.1 The Centroid Algorithm 92
4.2.2 Improved Centroid Algorithms 93
4.3 Connectivity-based Localization in Multi-hop Networks 93
4.3.1 The DV-hop Algorithm 94
4.3.2 Mathematics of Hop-count-based Localization 95
4.4 On Improving Connectivity-based Localization 96
4.4.1 Improvements by Adjusting Correction Factor 96
4.4.2 Improvements by Exploiting Neighborhood Information 97
4.5 Summary 104
References 105
Chapter 5 Rare-events Sensing and Event-powered Wireless Sensor Networks 109
5.1 Coverage Preservation 111
5.1.1 Overview 112
5.1.2 Sleep Eligibility 114
5.1.3 Performance Evaluation 115
5.2 Event-powered Wireless Sensor 118
5.2.1 Earthquakes and Structures 118
5.2.2 Vibration Energy Harvesting 118
5.2.3 Piezoelectric Harvesting for Structural Monitoring during Earthquakes 120
5.2.4 Wireless Sensor Node Design 120
5.2.4.1 Microcontroller Board 121
5.2.4.2 Power Management Board 121
5.2.5 System Test and Evaluation 122
5.2.6 Earthquake Simulator Test 123
5.2.7 Implications for Networking Protocol Design 125
5.3 Cluster-Centric WSNs for Rare-event Monitoring 126
5.3.1 System Model 126
5.3.2 Performance Evaluation 128
5.3.2.1 Time to Completion in a Cluster 129
5.3.2.2 Average and Total Time to Transmit 130
5.3.2.3 Energy Consumption 131
5.4 Summary 132
References 133
Part II Space WSS Solutions and Applications 137
Chapter 6 Battery-less Sensors for Space 139
6.1 Introduction 139
6.2 Wired or Wireless Sensing: Cost-Benefit Analysis 140
6.2.1 Wired Sensing Systems 140
6.2.2 Wireless Sensing Systems 140
6.2.3 Reliability Analysis 140
6.3 Active and Passive Wireless Sensors 143
6.4 Design Considerations for Battery-less Sensors 145
6.4.1 Sensor Material 145
6.4.2 Code Design 145
6.4.3 Interference Management 146
6.5 Summary 147
References 148
Chapter 7 Contact Plan Design for Predictable Disruption-tolerant Space Sensor Networks 149
7.1 Introduction 149
7.1.1 On the End-to-End Connectivity Paradigm 150
7.1.2 Disruption-tolerant Wireless Sensor Networks Overview 151
7.2 Contact Plan Design Methodology 155
7.2.1 Delay-tolerant Wireless Sensor Network Model 156
7.2.2 Contact Plan Design Constraints 158
7.2.2.1 Time-zone Constraints 158
7.2.2.2 Concurrent-resources Constraints 159
7.2.3 MILP Formulation of the Contact Plan Design Problem 160
7.3 Contact Plan Design Analysis 166
7.3.1 Case Study Overview 166
7.3.2 Case Study Results 168
7.4 Contact Plan Design Discussion 171
7.4.1 TACP Safeguard Margins and Topology Granularity 171
7.4.2 Contact Plan Computation and Distribution 172
7.4.3 Contact Plan Implementation 172
7.5 Summary 173
References 173
Chapter 8 Infrared Wireless Sensor Network Development for the Ariane Launcher 177
8.1 Introduction 177
8.1.1 Objectives 178
8.1.2 VEB Overview and Internal Surface Material 179
8.2 Development Processes and Measurements of Infrared Transceiver ASIC 180
8.2.1 Influence of Upper-stage Materials on Infrared Communication 180
8.2.2 Low-power Infrared Transceiver ASIC development 183
8.2.3 Time-synchronization and Time-stamping Methods 187
8.2.4 Commercial Smart Sensors for Ariane 5 Telemetry Subsystems 190
8.3 Summary 192
References 193
Chapter 9 Multichannel Wireless Sensor Networks for Structural Health Monitoring 195
9.1 Context 195
9.1.1 Expected Benefits of WSNs in Aircraft 196
9.1.2 WSN Requirements for Aircraft 196
9.1.3 Previous Work 197
9.1.4 Chapter Organization 198
9.2 General Multichannel Challenges 199
9.2.1 Signal Propagation in an Aircraft Cabin or inside a Launcher 199
9.2.2 Mesh Multichannel Wireless Networks 199
9.2.3 Network Build-up 200
9.2.4 Node Synchronization 200
9.2.5 Selection of Channels 200
9.2.6 Channel Assignment 201
9.2.7 Network Connectivity 201
9.2.8 Neighborhood Discovery 202
9.2.9 Medium Access Control 202
9.2.9.1 Contention-based Protocols 202
9.2.9.2 Contention-free Protocols 203
9.2.9.3 Hybrid Protocols 203
9.2.10 Dynamic Multihop Routing 204
9.2.11 Energy Efficiency 205
9.2.11.1 Reasons for Energy Waste 205
9.2.11.2 Classification of Energy-efficient Techniques 206
9.2.12 Robustness and Adaptivity of WSNs 207
9.3 Multichannel Challenges for Data Gathering Support 207
9.3.1 High Concentration of Traffic around the Sink 208
9.3.2 Time-slot and Channel Assignment 208
9.3.3 Conflicting Nodes 208
9.3.4 Multi-interface Sink 209
9.3.5 Optimal Number of Slots in a Collision-free Schedule 209
9.3.6 MAC dedicated to Data Gathering 212
9.3.7 Multichannel Routing for Convergecast 212
9.3.8 Centralised versus Distributed Collision-free Scheduling Algorithms 212
9.4 Sahara: Example of Solution 214
9.4.1 Description of the Solution Proposed 214
9.4.1.1 A Solution based on the IEEE 802.15.4 Standard 214
9.4.1.2 Network Deployment 214
9.4.1.3 Slotframe 214
9.4.1.4 Multi-interface Sink 215
9.4.1.5 Neighborhood Discovery 215
9.4.1.6 Collision-free Schedule 215
9.4.2 Illustrative Example 216
9.4.3 Performance Evaluation of the Solution 216
9.4.3.1 Impact of Multiple Channels and Multiple Radio Interfaces on the Aggregated Throughput 216
9.4.3.2 Homogeneous Traffic and Sink with a Single Radio Interface 218
9.4.3.3 Impact of the Number of Radio Interfaces of the Sink 218
9.4.3.4 Impact of Additional Links 219
9.4.3.5 Heterogeneous Traffic 220
9.4.4 Robustness and Adaptivity of the Solution Proposed 221
9.5 Summary 223
Acknowledgments 223
References 224
Chapter 10 Wireless Piezoelectric Sensor Systems for Defect Detection and Localization 227
10.1 Introduction 227
10.2 Lamb Wave-based Defect Detection 230
10.2.1 Active Piezoelectric Sensing Technology 230
10.2.2 Lamb Wave-based Defect Detection 231
10.3 Wireless PZT Sensor Networks 235
10.4 Wireless PZT Sensor Node 237
10.5 Distributed Data Processing 238
10.5.1 Operation Overview 238
10.5.2 Synchronized High Sampling-rate Sensing and Data Processing 239
10.6 Summary 241
Conflict of Interests 242
Acknowledgment 242
References 242
Chapter 11 Navigation and Remote Sensing using Near-space Satellite Platforms 247
11.1 Background and Motivation 247
11.1.1 What is Near-space? 247
11.1.2 Advantages of Near-space for Sensor Platforms 248
11.1.2.1 Inherent Survivability 249
11.1.2.2 Persistent Monitoring or Fast Revisiting Frequency 249
11.1.2.3 High Sensitivity and Large Footprint 249
11.1.2.4 Low Cost 250
11.1.3 Motivations for Near-space Satellite Platforms 250
11.2 Near-space Platforms in Wireless Sensor Systems 251
11.2.1 Near-space Platforms 251
11.2.2 Why Near-space Platforms should be used in Wireless Sensor Systems 253
11.3 Overview of NSPs in Wireless Sensor Systems 254
11.3.1 NSP Enabling Sensor Communications 254
11.3.2 Using NSPs for Radar and Navigating Sensors 255
11.3.3 Integrated Communication and Navigation Sensors 256
11.4 Integrated Wireless Sensor Systems 257
11.5 Arrangement of Near-space Platforms 260
11.6 Limitations and Vulnerabilities 262
11.6.1 Launch Constraints 263
11.6.2 Survivability Constraints 263
11.6.3 Legal Constraints 263
11.6.4 System Implementation Issues 263
11.7 Summary 264
References 265
Part III Underwater and Submerged WSS Solutions 273
Chapter 12 Underwater Acoustic Sensing: An Introduction 275
12.1 Introduction 275
12.2 Underwater Wireless Smart Sensing 277
12.2.1 Non-Acoustic Sensors 278
12.2.1.1 Radio Systems 278
12.2.1.2 Optical Systems 279
12.2.1.3 Magnetic Induction Systems 279
12.2.2 Acoustic Sensors 280
12.2.3 Received Signal Model 281
12.3 Netted Sensors 282
12.3.1 Nodes 283
12.3.2 Links 285
12.4 Networking 288
12.4.1 Environment 289
12.4.2 Solutions 289
12.5 Typical Underwater Sensing Applications 292
12.5.1 Monitoring Vehicles Approach 293
12.5.2 Developing Platforms Approach 294
12.6 Summary 297
References 297
Chapter 13 Underwater Anchor Localization Using Surface-reflected Beams 301
13.1 Introduction 301
13.2 UREAL Angle of Arrival Measurements 303
13.3 Closed-form Least Squares Position Estimation 304
13.3.1 Line-of-sight Localization 304
13.3.2 Non-line-of-sight Localization 306
13.4 Prototype Evaluation 307
13.5 Summary 312
References 312
Chapter 14 Coordinates Determination of Submerged Sensors with a Single Beacon Using the Cayley-Menger Determinant 313
14.1 Introduction 313
14.2 Underwater Wireless Sensor Networks 314
14.3 Dynamicity of Underwater Environment 315
14.3.1 Reference Deployment in the Deep Sea 315
14.3.2 Node Mobility 316
14.3.3 Inter-node Time Synchronization 317
14.3.4 Signal Reflection due to Obstacles and Surfaces 317
14.4 Proposed Configuration 317
14.4.1 Problem Domain 317
14.4.2 Environmental Constrains 318
14.5 Distance Determination 319
14.5.1 Distance-measurement Technique 320
14.5.2 Average Underwater Acoustic Speed 322
14.6 Coordinate Determination 323
14.6.1 Proposed Technique 324
14.6.2 Coordinates of the Sensors 325
14.6.3 Coordinates of the Sensors with Respect to the Beacon 329
14.7 Simulation Results 330
14.7.1 Coordinates with Euclidean Distances 331
14.7.2 Coordinates with Gaussian Noise 332
14.8 Summary 332
References 334
Chapter 15 Underwater and Submerged Wireless Sensor Systems: Security Issues and Solutions 337
15.1 Introduction 337
15.2 Underwater Wireless Sensor Systems 338
15.3 Security Requirements, Issues and Solutions 340
15.3.1 Security Requirements 340
15.3.2 Security Issues and Solutions 341
15.3.2.1 Key Management 341
15.3.2.2 Denial of Service Attacks 345
15.4 Future Challenges and Research Directions 346
15.4.1 Secure Localization 346
15.4.2 Secure Cross-layer Design 346
15.4.3 Secure Time Synchronization 347
15.5 Summary 347
References 347
Part IV Underground and Confined Environments WSS Solutions 351
Chapter 16 Achievable Throughput of Magnetic Induction Based Sensor Networks for Underground Communications 353
16.1 Introduction 353
16.2 Throughput Maximization for MI-WUSNs 355
16.2.1 Signal Transmission in MI-WUSNs 355
16.2.1.1 Direct MI Transmission Based WUSNs 356
16.2.1.2 MI Waveguide Based WUSNs 357
16.2.2 Practical Aspects of System Design 359
16.2.3 Network Specification 360
16.2.4 Throughput Maximization 362
16.2.5 Throughput of Direct MI Transmission Based WUSNs 363
16.2.6 Throughput of MI Waveguide Based WUSNs 366
16.3 Results 369
16.3.1 Direct MI Transmission Based WUSNs 370
16.3.2 MI Waveguide Based WUSNs 370
16.3.3 Comparison 371
16.4 Discussion 372
16.5 Summary 373
References 374
Chapter 17 Agricultural Applications of Underground Wireless Sensor Systems: A Technical Review 377
17.1 Introduction 377
17.2 WSN Technology in Agriculture 378
17.2.1 Sensor Node Architecture 378
17.2.2 Wireless Communication Technologies and Standards 378
17.2.3 Available Sensor Node for Agricultural Activities 380
17.3 WSNs for Agriculture 383
17.3.1 Terrestrial Wireless Sensor Networks 383
17.3.2 Wireless Underground Sensor Networks 384
17.3.3 Hybrid Wireless Sensor Networks 385
17.4 Design Challenges of WSNs in Agriculture 385
17.4.1 Energy Consumption 385
17.4.2 Power Sources 386
17.4.3 Fault Tolerance 387
17.4.4 Scalability 388
17.4.5 Network Architecture 388
17.4.6 Coverage and Connectivity 390
17.4.7 Wireless Underground Communication 391
17.5 WSN-based Applications in Agriculture 392
17.5.1 Environmental Monitoring 392
17.5.2 Resource Management 394
17.5.3 Facility Control 396
17.6 Summary 398
References 400
Part V Industrial and Other WSS Solutions 407
Chapter 18 Structural Health Monitoring with WSNs 409
18.1 Introduction 409
18.2 SHM Sensing Techniques 412
18.2.1 Compressed Smart Sensing for WSNs 412
18.2.1.1 Compressed Sensing 413
18.2.2 Energy Consumption 414
18.2.2.1 Energy Conservation 414
18.2.2.2 Power Harvesting 416
18.3 WSN-enabled SHM Applications 417
18.3.1 IoT-SHM Integration 417
18.3.2 IoT-SHM Applications 419
18.3.2.1 Traditional Sensor-based Applications 419
18.3.2.2 Optical-fibre Integrated Applications 420
18.3.3 RFID Technology for SHM 421
18.4 Network Topology and Overlays 423
18.4.1 Networking Topology 423
18.4.2 Network Overlay as a Service 425
18.4.2.1 Cases Supporting the Need for NSG3-style Overlays 425
18.4.2.2 Cases Supporting Integration of Overlay with IP Technologies 426
18.4.2.3 Cases of Supporting the Applications 426
18.5 Summary 428
Acknowledgment 429
References 429
Chapter 19 Error Manifestations in Industrial WSN Communications and Guidelines for Countermeasures 435
19.1 Introduction 435
19.2 Compromising Factors in IWSN Communication 436
19.2.1 Physical Factors 436
19.2.2 Electromagnetic Interference 437
19.2.3 Manifestations of Signal Distortion 439
19.3 The Statistics of Link-quality Metrics for Poor Links 440
19.3.1 The Received Signal Strength Indicator 441
19.3.2 The Link Quality Indicator 441
19.3.3 The Ambiguity of RSSI and LQI Readings 441
19.4 The Statistical Properties of Bit- and Symbol-Errors 443
19.5 Guidelines for Countermeasures 445
19.5.1 Forward Error Correction and Interleaving 447
19.5.2 DSSS Chip-level Manipulations 447
19.5.3 Exploiting Determinism in Industrial Wireless 450
19.5.4 Channel Diagnostics and Radio Resource Management 452
19.6 Summary 454
References 454
Chapter 20 A Medium-access Approach to Wireless Technologies for Reliable Communication in Aircraft 457
20.1 Introduction 457
20.2 Reliability Assessment Framework 459
20.2.1 Transmission Layer 461
20.2.2 Medium Access Layer 462
20.2.3 Safety Layer 463
20.3 Metrics and Parameters 464
20.3.1 Design Parameters 464
20.3.1.1 Cycle Length and Packet Size 464
20.3.1.2 Node Density 465
20.3.2 Performance Metrics 465
20.3.2.1 Power Consumption 465
20.3.2.2 Initialization Time 465
20.3.2.3 Reliability 466
20.4 Candidate Wireless Technologies 466
20.4.1 WISA & WSAN-FA
20.4.2 ECMA-368 467
20.4.3 IEEE 802.11e 467
20.4.4 IEEE 802.15.4 468
20.4.5 WirelessHART 469
20.4.6 LTE 470
20.4.7 Comparison 472
20.5 Evaluation 474
20.6 Summary 475
References 475
Chapter 21 Applications of Wireless Sensor Systems for Monitoring of Offshore Windfarms 479
21.1 Introduction 479
21.2 Literature Review 480
21.3 WSNs in Windfarms 480
21.3.1 Routing Protocol- NETCRP 482
21.3.2 Optimal Number of Cluster-heads 482
21.3.3 Adaptive Threshold 482
21.3.4 Fault Detection Scheme 484
21.4 Simulation and Discussion 489
21.4.1 Flexible Threshold Method 490
21.4.2 Fault-detection Scheme 490
21.5 Summary 491
References 492
Index 495
Supplemental Images 502
EULA 506

Erscheint lt. Verlag 8.6.2017
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Ali Abedi • Communication Technology - Networks • confined environments WSS solutions • Drahtlose Kommunikation • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Habib F. Rashvand • industrial wireless sensor systems • industrial WSS solutions • Kommunikationsnetz • Kommunikationsnetze • Mobile & Wireless Communications • Sensor • Sensoren, Instrumente u. Messung • Sensors, Instrumentation & Measurement • Sensortechnik • space WSS solutions • submerged WSS solutions • telecommunications • Underground and Industrial • underground wireless sensor systems • underground WSS solutions • underwater • underwater wireless sensor systems • underwater WSS solutions • wireless sensor applications • wireless sensor networks • wireless sensors • wireless sensor systems • wireless sensor systems for extreme environments • Wireless Sensor Systems for Extreme Environments: Space • wireless sensor systems in space • wireless sensor technology • Wireless systems • WSS for extreme environments • WSS space applications
ISBN-10 1-119-12647-9 / 1119126479
ISBN-13 978-1-119-12647-8 / 9781119126478
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kommunikationssysteme mit EIB/KNX, LON, BACnet und Funk

von Thomas Hansemann; Christof Hübner; Kay Böhnke

eBook Download (2025)
Hanser (Verlag)
CHF 38,95
Verfahren zur Berechnung elektrischer Energieversorgungsnetze

von Karl Friedrich Schäfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 107,45