Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Unmanned Aircraft Systems -

Unmanned Aircraft Systems (eBook)

eBook Download: EPUB
2016
John Wiley & Sons (Verlag)
978-1-118-86646-7 (ISBN)
Systemvoraussetzungen
200,99 inkl. MwSt
(CHF 196,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Covering the design, development, operation and mission profiles of unmanned aircraft systems, this single, comprehensive volume forms a complete, stand-alone reference on the topic. The volume integrates with the online Wiley Encyclopedia of Aerospace Engineering, providing many new and updated articles for existing subscribers to that work.


UNMANNED AIRCRAF T SYSTEMS UNMANNED AIRCRAF T SYSTEMS An unmanned aircraft system (UAS), sometimes called a drone, is an aircraft without a human pilot on board ??? instead, the UAS can be controlled by an operator station on the ground or may be autonomous in operation. UAS are capable of addressing a broad range of applications in diverse, complex environments. Traditionally employed in mainly military applications, recent regulatory changes around the world are leading to an explosion of interest and wide-ranging new applications for UAS in civil airspace. Covering the design, development, operation, and mission profiles of unmanned aircraft systems, this single, comprehensive volume forms a complete, stand-alone reference on the topic. The volume integrates with the online Wiley Encyclopedia of Aerospace Engineering, providing many new and updated articles for existing subscribers to that work. The chapters cover the following items: Airframe configurations and design (launch systems, power generation, propulsion) Operations (missions, integration issues, and airspace access) Coordination (multivehicle cooperation and human oversight) With contributions from leading experts, this volume is intended to be a valuable addition, and a useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.

EDITORS ELLA ATKINS ANÍBAL OLLERO ANTONIOS TSOURDOS

Contributors vii

Foreword xiii

Preface xv

Part 1 Introductory 1

1 UAS Uses, Capabilities, Grand Challenges 3

Part 2 Missions 15

2 Remote Sensing Methodology for Unmanned Aerial Systems 17

3 Autonomous Parachute-Based Precision Delivery Systems 29

4 Networked Multiple UAS 53

5 Weapons Integration 63

Part 3 Airframe Configurations 73

6 Classes and Missions of UAVs 75

7 Launch of UAVs 85

8 Recovery of UAVs 93

9 Development of Centimeter-Sized Aerial Vehicles 101

Part 4 UAS Design and Subsystems 111

10 Overview of UAS Control Stations 113

11 Propulsion Systems 125

12 Power Generation and Energy Management 133

13 Control System Mechanization 153

Part 5 Autonomy 165

14 Relative Navigation in GPS-Degraded Environments 167

15 Target Detection and Mission Planning Based on Pigeon-Inspired Optimization 177

16 Autonomy Architectures 197

17 Obstacle Avoidance: Static Obstacles 211

18 Guided Weapon and UAV Navigation and Path-Planning 217

19 Embedded UAS Autopilot and Sensor Systems 231

Part 6 Control 249

20 Modeling and Frequency-Domain Parameter Identification of a Small-Scale Flybarless Unmanned Helicopter 251

21 Trajectory Planning and Guidance 279

22 Sensor Fusion 295

Part 7 Human Oversight 317

23 Function Allocation between Human and Automation and between Air and Ground 319

24 Coordination with Manned Aircraft and Air Traffic Control 327

25 Aircraft Pilot and Operator Interfaces 335

Part 8 Multi-Vehicle Cooperation and Coordination 345

26 Multi-UAV Cooperation 347

27 Coordinated Standoff Tracking of Moving Ground Targets Using Multiple UAVs 357

28 Distributed Situational Awareness and Control 371

29 Cooperative Search, Reconnaissance, Surveillance 383

30 UAV Swarms: Decision-Making Paradigms 397

31 Integrated Health Monitoring for Multiple Air Vehicles 411

32 Cooperative Control for Multiple Air Vehicles 425

33 Flight Formation Control 435

Part 9 Airspace Access 447

34 Operational Profiles of Unmanned Aircraft Systems in the Context of the US Regulatory Regime 449

35 High Altitude: Among and Above Commercial Transport 465

36 Low-Altitude Rural to Urban Unmanned Aircraft System Operations 475

37 UAS in the Terminal Area: Challenges and Opportunities 489

38 Unmanned Aircraft Systems Operations in US Airspace 507

39 Aircraft Communications and Networking 523

40 Sense-and-Avoid System Based on Radar and Cooperative Sensors 533

41 Standards and Interoperability: A Systems Engineering Perspective 547

Part 10 Integration Issues: Safety, Security, Privacy 559

42 Unmanned Aircraft Systems (UAS) - Regulatory Policy and Processes: A Moving Landscape - A US Perspective 561

43 Requirements: Levels of Safety 579

44 Insurance as a Mission Enabler 589

45 Fail-Safe Systems from a UAS Guidance Perspective 599

46 UAS Reliability and Risk Analysis 615

47 Sense and Avoid: Systems and Methods 627

48 System and Cyber Security: Requirements, Modeling, and Management 637

49 Social and Legal Issues 651

Subject Index 661

Contributors


Brandon R. Abel
International Center for Air Transportation, Massachusetts Institute of Technology, Cambridge, MA, USA

Domenico Accardo
University of Naples “Federico II”, Napoli, Italy

José Joaquin Acevedo
Grupo de Robótica, Visión y Control, Universidad de Sevilla, Seville, Spain

Florian-Michael Adolf
German Aerospace Center (DLR), Department of Unmanned Aircraft, Institute of Flight Systems, Braunschweig, Germany

Jessica Alvarenga
Ritchie School of Engineering and Computer Science, DU Unmanned Research Institute, University of Denver, Denver, CO, USA

Brian M. Argrow
Department of Aerospace Engineering Sciences, Research and Engineering Center for Unmanned Vehicles, University of Colorado Boulder, Boulder, CO, USA

Begoña C. Arrue
Grupo de Robótica, Visión y Control, Universidad de Sevilla, Seville, Spain

Ella M. Atkins
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

Randal W. Beard
Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA

Yunfeng Cao
College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Jesús Capitán
Grupo de Robótica, Visión y Control, Universidad de Sevilla, Seville, Spain

Philip B. Charlesworth
Airbus Group Innovations, Newport, UK

Wen-Hua Chen
Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, UK

Yang Quan Chen
School of Engineering, University of California, Merced, CA, USA

Matthew Coombes
Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, UK

Mary L. Cummings
Humans and Autonomy Laboratory, Duke University, Durham, NC, USA

Dan DeLaurentis
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA

Pedro F.A. Di Donato
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA and National Civil Aviation Agency–Brazil (ANAC), São, José dos Campos, Brazil

Haibin Duan
School of Automation Science and Electrical Engineering, Beihang University, Beijing, P.R. China

John T. Economou
Centre for Defence Engineering, Defence Academy of the United Kingdom, Cranfield University, Swindon, UK

Gary J. Ellingson
Mechanical Engineering Department, Brigham Young University, Provo, UT, USA

Paul G. Fahlstrom
United States Army Materiel Command, Huntsville, AL, USA

Farhan A. Faruqi
Information Processing and Human Sciences Group, Combat and Mission Systems, WCSD, Defence Science and Technology Organisation, Edinburgh, South Australia

Giancarmine Fasano
University of Naples “Federico II”, Napoli, Italy

Karen Feigh
Cognitive Engineering Center, Georgia Tech, Atlanta, GA, USA

C.E. “Noah” Flood
CAVU Global LLC, Purcellville, VA, USA

Michael S. Francis
United Technologies Research Center, East Hartford, CT, USA

Seng Keat Gan
Australian Centre for Field Robotics, The University of Sydney, Sydney, Australia

Alessandro Gardi
RMIT University, Melbourne, Australia

Thomas J. Gleason
Gleason Research Associates, Inc., Columbia, MD, USA

R. John Hansman
International Center for Air Transportation, Massachusetts Institute of Technology, Cambridge, MA, USA

Inseok Hwang
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA

Mario Innocenti
Munitions Directorate, Eglin Air Force Base, Air Force Research Laboratory, FL, USA

Pantelis Isaiah
Faculty of Aerospace Engineering, The Technion—Israel Institute of Technology, Haifa, Israel

Stéphane Kemkemian
Thales Airborne Systems, Elancourt, France

Seungkeun Kim
Department of Aerospace Engineering, Chungnam National University, Daejeon, Republic of Korea

Trevor Kistan
RMIT University, Melbourne, Australia and THALES Australia, Melbourne, Australia

Daniel P. Koch
Mechanical Engineering Department, Brigham Young University, Provo, UT, USA

Cheolhyeon Kwon
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA

Jack W. Langelaan
Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA, USA

Nicolas Léchevin
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quéebec, Canada

Christopher W. Lum
William E. Boeing Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA

Douglas M. Marshall
TrueNorth Consulting LLC, Grand Forks, ND, USAand De Paul University College of Law, Chicago, IL, USA

David W. Matolak
Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA

Iván Maza
Grupo de Robótica, Visión y Control, Universidad de Sevilla, Seville, Spain

Timothy W. McLain
Mechanical Engineering Department, Brigham Young University, Provo, UT, USA

Luis Merino
Grupo de Robótica, Visión y Control, Universidad Pablo de Olavide, Seville, Spain

Antonio Moccia
University of Naples “Federico II”, Napoli, Italy

Linas Mockus
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA

Eric Mueller
NASA, Moffett Field, CA, USA

Myriam Nouvel
Thales Airborne Systems, Elancourt, France

Paul W. Nyholm
Mechanical Engineering Department, Brigham Young University, Provo, UT, USA

Hyondong Oh
Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, UK

Aníbal Ollero
Universidad de Sevilla and Scientific Advisory Department of the Center for Advanced Aerospace Technologies, Seville, Spain

Martina Orefice
Air Transport Sustainability Department, CIRA Italian Aerospace Research Center, Capua, Italy

Charles H. Patchett
School of Engineering, University of Liverpool, Liverpool, UK

Lorenzo Pollini
Department of Information Engineering, University of Pisa, Pisa, Italy

Amy Pritchett
Cognitive Engineering Center, Georgia Tech, Atlanta, GA, USA

Camille A. Rabbath
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quéebec, Canada

Matthew R. Rabe
International Center for Air Transportation, Massachusetts Institute of Technology, Cambridge, MA, USA

Subramanian Ramasamy
RMIT University, Melbourne, Australia

Francisco J. Ramos
UAS Ground Segment Department, Airbus Defence & Space, Getafe, Spain

James M. Rankin
Avionics Engineering Center, School of Electrical Engineering and Computer Science, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA

Keith A. Rigby
BAE Systems, Warton Aerodrome, Preston, UK

Matthew J. Rutherford
Ritchie School of Engineering and Computer Science, DU Unmanned Research Institute, University of Denver, Denver, CO, USA

Roberto Sabatini
RMIT University, Melbourne, Australia

Daniel P. Salvano
Aviation Consultant, Safety, Certification and CNS Systems, Haymarket, VA, USA

A. Savvaris
Centre for Cyberphysical Systems, Institute for Aerospace Sciences, Cranfield University, Cranfield, UK

Corey J. Schumacher
711 HPW/RH, Wright-Patterson AFB, Ohio, OH, USA

Pau Segui-Gasco
Centre for Autonomous and Cyber-Physical Systems, SATM, Cranfield University, Cranfield, UK

Madhavan Shanmugavel
School of Engineering, Monash University Malaysia, Selangor, Malaysia

Tal Shima
Faculty of Aerospace Engineering, The Technion—Israel Institute of Technology, Haifa, Israel

Hyo-Sang Shin
Centre for Autonomous and Cyber-Physical Systems, SATM, Cranfield University, Cranfield, UK

Brandon J. Stark
School of Engineering, University of California, Merced, CA, USA

Chun-Yi Su
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quéebec, Canada

Salah Sukkarieh
Australian Centre for Field Robotics, The University of Sydney, Sydney, Australia

Shigeru Sunada
Department of Aerospace Engineering, Osaka Prefecture University, Osaka, Japan

Hiroshi Tokutake
Department of Aerospace Engineering, Osaka Prefecture University, Osaka,...

Erscheint lt. Verlag 4.11.2016
Mitarbeit Chef-Herausgeber: Richard Blockley, Wei Shyy
Sprache englisch
Themenwelt Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
Technik Maschinenbau
Schlagworte Aeronautic & Aerospace Engineering • Bauingenieur- u. Bauwesen • Civil Engineering & Construction • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Luftfahrt • Luft- u. Raumfahrttechnik • Maschinenbau • mechanical engineering • Robotics • Robotik • Transportation Engineering • Unbemanntes Luftfahrzeug • Verkehrsbau
ISBN-10 1-118-86646-0 / 1118866460
ISBN-13 978-1-118-86646-7 / 9781118866467
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Strömungsmechanik, Fahrdynamik, Thermomanagement, Akustik, …

von Thomas Schütz

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 219,95
Grundlagen und Praxis

von Anton Karle

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95