Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Hydrometeorology (eBook)

eBook Download: EPUB
2016
John Wiley & Sons (Verlag)
978-1-118-41494-1 (ISBN)

Lese- und Medienproben

Hydrometeorology - Christopher G. Collier
Systemvoraussetzungen
56,99 inkl. MwSt
(CHF 55,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Hydrometeorology presents an introduction to relevant topics in the interdisciplinary fields of hydrology and meteorology. This book is one of the few books aiming to provide a balance between aspects of meteorological and hydrological processes. The transfer of energy and water between the land surface and lower atmosphere within the hydrological cycle is addressed followed by a description of the nature of precipitation, and how it is formed. Forecasting precipitation is reviewed on all scales, and the range of rainfall-runoff models and coastal surge models and forecasts (including tsunamis) which have been, and are being, used are discussed.

The mechanisms of snow, ice (glacier, sea and tundra), evaporation and transpiration, how drought occurs and the representation of wind are described. How rainfall (including radar measurements) and river flow information is gathered and analysed (including, frequency analysis, Probable Maximum Precipitation and Flood) are presented. Satellite measurements of precipitation are discussed. Examples of major past floods and droughts are given.

Past and future climate change, which is included, underpins the importance of hydro-meteorological processes. The structure of the general circulation of the atmosphere and how it influences weather and climate including the Hadley, Ferrel and Polar cells, the Trade winds and the El Nino, is outlined. Finally, the influence of urban areas on rainfall formation, dealing with urban drainage and air quality are described.

Each chapter ends with one or two specific points as appendices, elements discussed in the chapter and a list of sample problems to aid understanding.

Readership: This book is aimed at 3rd year undergraduate and postgraduate students on hydrology/hydrometeorology, environmental science and geography courses. Professionals in environmental protection agencies and consultancies will also find the book of great interest. It contains a balance of both the physics and mathematics which underpin such courses and activities.



Christopher G. Collier received a BSc in Physics and ARCS in Science at Imperial College, London in 1968. Subsequently he received a PhD (1999) and a DSc (2008) from the University of Salford. He joined the Meteorological Office in 1968, and later chaired the European Union International Weather Radar Networking project, and served on numerous World Meteorological Organisation (WMO), BNSC, EUMETSAT, ESA and NERC committees. He is a Chartered Meteorologist of the Royal Meteorological Society, and was President of that Society 2004-2006 being elected an Honorary Fellow in 2012, and served on the committees of the British Hydrological Society. He is a member of the American Meteorological Society. He left the Met Office in 1995 becoming a Professor of Environmental Remote Sensing at the University of Salford, and joined the National Centre for Atmospheric Science based at the University of Leeds becoming Professor of Atmospheric Science and Head of Strategic Partnerships in 2009. He was awarded the First Vaisala Prize for radar measurements of precipitation in 1986.

Christopher G. Collier received a BSc in Physics and ARCS in Science at Imperial College, London in 1968. Subsequently he received a PhD (1999) and a DSc (2008) from the University of Salford. He joined the Meteorological Office in 1968, and later chaired the European Union International Weather Radar Networking project, and served on numerous World Meteorological Organisation (WMO), BNSC, EUMETSAT, ESA and NERC committees. He is a Chartered Meteorologist of the Royal Meteorological Society, and was President of that Society 2004-2006 being elected an Honorary Fellow in 2012, and served on the committees of the British Hydrological Society. He is a member of the American Meteorological Society. He left the Met Office in 1995 becoming a Professor of Environmental Remote Sensing at the University of Salford, and joined the National Centre for Atmospheric Science based at the University of Leeds becoming Professor of Atmospheric Science and Head of Strategic Partnerships in 2009. He was awarded the First Vaisala Prize for radar measurements of precipitation in 1986.

1
The Hydrological Cycle


1.1 Overview


The hydrological cycle describes the continuous movement of water above, on and below the surface of the Earth. It is a conceptual model that describes the storage and movement of water between the biosphere (the global sum of all ecosystems, sometimes called the zone of life on Earth), the atmosphere (the air surrounding the Earth, which is a mixture of gases, mainly nitrogen (about 80%) and oxygen (about 20%) with other minor gases), the cryosphere (the areas of snow and ice), the lithosphere (the rigid outermost shell of the Earth, comprising the crust and a portion of the upper mantle), the anthroposphere (the effect of human beings on the Earth system) and the hydrosphere (see Table 1.1).

Table 1.1 Water in the hydrosphere and the distribution of fresh water on the Earth (from Martinec, 1985)

(a) Distribution of water in the hydrosphere
Forms of water present Water volume
(106 km3)
As %
Oceans, seas 1348 97.4
Polar ice, sea ice, glaciers 28 2.0
Surface water, ground water, atmospheric water 8 0.6
Total 1384 100.0
Total fresh water 36 2.6
(b) Distribution of fresh water on Earth
Forms of water present Water volume (106km3) As %
* *
Polar ice, glaciers 24.8 27.9 76.93 77.24
Soil moisture 0.09 0.06 0.28 0.17
Ground water within reach 3.6 3.56 11.17 9.85
Deep ground water 3.6 4.46 11.17 12.35
Lakes and rivers 0.132 0.127 0.41 0.35
Atmosphere 0.014 0.014 0.04 0.04
Total 32.236 36.121 100.0 100.0

*Based on Volker (1970).

Based on Dracos (1980), referred to in Baumgartner and Reichel (1975).

Models of the biosphere are often referred to as land surface parameterization schemes (LSPs) or soil–vegetation–atmosphere transfer schemes (SVATs). An example of an SVAT is described by Sellers et al. (1986). The water on the Earth’s surface occurs as streams, lakes and wetlands in addition to the sea. Surface water also includes the solid forms of precipitation, namely snow and ice. The water below the surface of the Earth is ground water.

Most of the energy leaves the ocean surface in the form of latent heat in water vapour, but this is not necessarily the case for land surfaces. Hence maritime air masses are different to continental air masses. The atmosphere and oceans are strongly coupled by the exchange of energy, water vapour, momentum at their interface, and precipitation. The oceans represent an enormous reservoir for stored energy and are denser than the atmosphere, having a larger mechanical inertia. Therefore ocean currents are much slower than atmospheric flows. The atmosphere is heated from below by the Sun’s energy intercepted by the underlying surface, whereas the oceans are heated from above. Lakes, rivers and underground water can have significant hydrometeorological and hydroclimatological significance in continental regions. The hydrological cycle is represented by the simplified diagram in Figure 1.1.

Figure 1.1 Simplified representation of the hydrological cycle

(NWS Jetstream NOAA, USA, www.srh.noaa.gov/jetstream/atmos/hydro.htm)

1.2 Processes comprising the hydrological cycle


There are many processes involved in the hydrological cycle, the most important of which are as follows:

  • Evaporation is the change of state from liquid water to vapour. The energy to achieve this may come from the Sun, the atmosphere itself, the Earth or human activity.
  • Transpiration is the evaporation of water from plants through the small openings found on the underside of leaves (known as stomata). In most plants, transpiration is a passive process largely controlled by the humidity of the atmosphere and the moisture content of the soil. Only 1% of the transpired water passing through a plant is used by the plant to grow, with the rest of the water being passed into the atmosphere. Evaporation and transpiration return water to the atmosphere at rates which vary according to the climatic conditions.
  • Condensation is the process whereby water vapour in the atmosphere is changed into liquid water as clouds and dew. This depends upon the air temperature and the dew point temperature. The dew point temperature is the temperature at which the air, as it is cooled, becomes saturated and dew can form. Any additional cooling causes water vapour to condense. When the air temperature and the dew point temperature are equal, mist and fog occur. Since water vapour has a higher energy level than liquid water, when condensation occurs the excess energy is released in the form of heat. When tiny condensation particles, through collision or coalescence with each other, grow too large for the ascending air to support them, they fall to the surface of the Earth as precipitation (Chapter 2). Precipitation is the primary way fresh water reaches the Earth’s surface, and on average the Earth receives about 980 mm each year over both the oceans and the land.
  • Infiltration of water into the land surface occurs if the ground is not saturated, or contains cracks or fissures. The flow of water into the ground may lead to the recharge of aquifers, or may move through unsaturated zones to discharge into rivers, lakes or the seas. Between storm or snowmelt periods, stream flow is sustained by discharge from the ground water systems. If storms are intense, most water reaches streams rapidly. Indeed, if the water table – the boundary between the saturated and unsaturated zones – rises to the land surface, overland flow may occur.
  • The residence time of water in parts of the hydrological cycle is the average time a water molecule will spend in a particular area. These times are given in Table 1.2. Note that ground water can spend over 10,000 years beneath the surface of the Earth before leaving, whereas water stored in the soil remains there very briefly. After water evaporates, its residence time in the atmosphere is about nine days before it condenses and falls to the surface of the Earth as precipitation. Residence times can be estimated in two ways. The first and more common method is to use the principle of conservation of mass, assuming the amount of water in a given store is roughly constant. The residence time is derived by dividing the volume of water in the store by the rate by which water either enters or leaves the store. The second method, for ground water, is via isotropic techniques. These techniques use either in-stream tracer injection combined with modelling, or measurements of naturally occurring tracers such as radon-222 (see for example Lamontagne and Cook, 2007).
  • Human activities release tiny particles (aerosols) into the atmosphere, which may enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to the availability and quality of fresh water (see Ramanathan et al., 2001).

Table 1.2 Average residence times for specific stores (see for example www.physicalgeography.net/fundamentals/8b.html)

Reservoir Average residence time
Antarctica 20,000 years
Oceans 3,200 years
Glaciers 20 to 100 years
Seasonal snow cover 2 to 6 months
Soil moisture 1 to 2 months
Ground water shallow 100 to 200 years
Ground water deep 10,000 years
Lakes 50 to 100 years
Rivers 2 to 6 months
Atmosphere 9 days

1.3 Global influences on the hydrological cycle


Differential heating by the Sun is the primary cause of the general circulation of the atmosphere. There are a number of regional differences which influence the hydrological cycle in addition to the relative...

Erscheint lt. Verlag 25.7.2016
Reihe/Serie Advancing Weather and Climate Science
Advancing Weather and Climate Science
Advancing Weather and Climate Science
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Technik
Schlagworte Aspects • Atmosphere • balance between • Book • books • Climatology & Palaeoclimatology • Cycle • earth sciences • Energy • Geowissenschaften • hydrological • Hydrology • hydrometeorology • interdisciplinary fields • Introduction • Klimatologie u. Paläoklimatologie • Klimatologie u. Paläoklimatologie • Land • Lower • Meteorological • Meteorologie • meteorology • precipitation • processes • relevant topics • Surface • Transfer
ISBN-10 1-118-41494-2 / 1118414942
ISBN-13 978-1-118-41494-1 / 9781118414941
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich