Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Antenna Theory (eBook)

Analysis and Design
eBook Download: PDF
2015 | 4. Auflage
John Wiley & Sons (Verlag)
9781119178989 (ISBN)

Lese- und Medienproben

Antenna Theory - Constantine A. Balanis
Systemvoraussetzungen
159,99 inkl. MwSt
(CHF 156,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Updated with color and gray scale illustrations, a companion website housing supplementary material, and new sections covering recent developments in antenna analysis and design
This book introduces the fundamental principles of antenna theory and explains how to apply them to the analysis, design, and measurements of antennas. Due to the variety of methods of analysis and design, and the different antenna structures available, the applications covered in this book are made to some of the most basic and practical antenna configurations. Among these antenna configurations are linear dipoles; loops; arrays; broadband antennas; aperture antennas; horns; microstrip antennas; and reflector antennas. The text contains sufficient mathematical detail to enable undergraduate and beginning graduate students in electrical engineering and physics to follow the flow of analysis and design. Readers should have a basic knowledge of undergraduate electromagnetic theory, including Maxwell's equations and the wave equation, introductory physics, and differential and integral calculus.

  • Presents new sections on flexible and conformal bowtie, Vivaldi antenna, antenna miniaturization, antennas for mobile communications, dielectric resonator antennas, and scale modeling
  • Provides color and gray scale figures and illustrations to better depict antenna radiation characteristics
  • Includes access to a companion website housing MATLAB programs, Java-based applets and animations, Power Point notes, Java-based interactive questionnaires and a solutions manual for instructors
  • Introduces over 100 additional end-of-chapter problems


Antenna Theory: Analysis and Design, Fourth Edition
is designed to meet the needs of senior undergraduate and beginning graduate level students in electrical engineering and physics, as well as practicing engineers and antenna designers.
Constantine A. Balanis received his BSEE degree from the Virginia Tech in 1964, his MEE degree from the University of Virginia in 1966, his PhD in Electrical Engineering from The Ohio State University in 1969, and an Honorary Doctorate from the Aristotle University of Thessaloniki in 2004. From 1964 to 1970, he was with the NASA Langley Research Center in Hampton, VA, and from 1970 to 1983, he was with the Department of Electrical Engineering of West Virginia University. In 1983 he joined Arizona State University and is now Regents' Professor of Electrical Engineering. Dr. Balanis is also a life fellow of the IEEE.



Constantine A. Balanis received his BSEE degree from the Virginia Tech in 1964, his MEE degree from the University of Virginia in 1966, his PhD in Electrical Engineering from The Ohio State University in 1969, and an Honorary Doctorate from the Aristotle University of Thessaloniki in 2004. From 1964 to 1970, he was with the NASA Langley Research Center in Hampton, VA, and from 1970 to 1983, he was with the Department of Electrical Engineering of West Virginia University. In 1983 he joined Arizona State University and is now Regents' Professor of Electrical Engineering. Dr. Balanis is also a life fellow of the IEEE.
Updated with color and gray scale illustrations, a companion website housing supplementary material, and new sections covering recent developments in antenna analysis and designThis book introduces the fundamental principles of antenna theory and explains how to apply them to the analysis, design, and measurements of antennas. Due to the variety of methods of analysis and design, and the different antenna structures available, the applications covered in this book are made to some of the most basic and practical antenna configurations. Among these antenna configurations are linear dipoles; loops; arrays; broadband antennas; aperture antennas; horns; microstrip antennas; and reflector antennas. The text contains sufficient mathematical detail to enable undergraduate and beginning graduate students in electrical engineering and physics to follow the flow of analysis and design. Readers should have a basic knowledge of undergraduate electromagnetic theory, including Maxwell s equations and the wave equation, introductory physics, and differential and integral calculus. Presents new sections on flexible and conformal bowtie, Vivaldi antenna, antenna miniaturization, antennas for mobile communications, dielectric resonator antennas, and scale modeling Provides color and gray scale figures and illustrations to better depict antenna radiation characteristics Includes access to a companion website housing MATLAB programs, Java-based applets and animations, Power Point notes, Java-based interactive questionnaires and a solutions manual for instructors Introduces over 100 additional end-of-chapter problems Antenna Theory: Analysis and Design, Fourth Edition is designed to meet the needs of senior undergraduate and beginning graduate level students in electrical engineering and physics, as well as practicing engineers and antenna designers.Constantine A. Balanis received his BSEE degree from the Virginia Tech in 1964, his MEE degree from the University of Virginia in 1966, his PhD in Electrical Engineering from The Ohio State University in 1969, and an Honorary Doctorate from the Aristotle University of Thessaloniki in 2004. From 1964 to 1970, he was with the NASA Langley Research Center in Hampton, VA, and from 1970 to 1983, he was with the Department of Electrical Engineering of West Virginia University. In 1983 he joined Arizona State University and is now Regents' Professor of Electrical Engineering. Dr. Balanis is also a life fellow of the IEEE.

Constantine A. Balanis received his BSEE degree from the Virginia Tech in 1964, his MEE degree from the University of Virginia in 1966, his PhD in Electrical Engineering from The Ohio State University in 1969, and an Honorary Doctorate from the Aristotle University of Thessaloniki in 2004. From 1964 to 1970, he was with the NASA Langley Research Center in Hampton, VA, and from 1970 to 1983, he was with the Department of Electrical Engineering of West Virginia University. In 1983 he joined Arizona State University and is now Regents' Professor of Electrical Engineering. Dr. Balanis is also a life fellow of the IEEE.

Cover 1
Title Page 5
Copyright 6
Contents 9
Preface 15
About the Companion Website 21
Chapter 1 Antennas 23
1.1 Introduction 23
1.2 Types of Antennas 25
1.2.1 Wire Antennas 25
1.2.2 Aperture Antennas 25
1.2.3 Microstrip Antennas 27
1.2.4 Array Antennas 27
1.2.5 Reflector Antennas 28
1.2.6 Lens Antennas 28
1.3 Radiation Mechanism 29
1.3.1 Single Wire 29
1.3.2 Two-Wires 32
1.3.3 Dipole 35
1.3.4 Computer Animation-Visualization of Radiation Problems 35
1.4 Current Distribution on a Thin Wire Antenna 37
1.5 Historical Advancement 40
1.5.1 Antenna Elements 41
1.5.2 Methods of Analysis 42
1.5.3 Some Future Challenges 43
1.6 Multimedia 43
References 44
Chapter 2 Fundamental Parameters and Figures-of-Merit of Antennas 47
2.1 Introduction 47
2.2 Radiation Pattern 47
2.2.1 Radiation Pattern Lobes 48
2.2.2 Isotropic, Directional, and Omnidirectional Patterns 52
2.2.3 Principal Patterns 52
2.2.4 Field Regions 53
2.2.5 Radian and Steradian 55
2.3 Radiation Power Density 57
2.4 Radiation Intensity 59
2.5 Beamwidth 62
2.6 Directivity 63
2.6.1 Directional Patterns 69
2.6.2 Omnidirectional Patterns 73
2.7 Numerical Techniques 77
2.8 Antenna Efficiency 82
2.9 Gain, Realized Gain 83
2.10 Beam Efficiency 87
2.11 Bandwidth 87
2.12 Polarization 88
2.12.1 Linear, Circular, and Elliptical Polarizations 90
2.12.2 Polarization Loss Factor and Efficiency 93
2.13 Input Impedance 97
2.14 Antenna Radiation Efficiency 101
2.15 Antenna Vector Effective Length and Equivalent Areas 103
2.15.1 Vector Effective Length 103
2.15.2 Antenna Equivalent Areas 105
2.16 Maximum Directivity and Maximum Effective Area 108
2.17 Friis Transmission Equation and Radar Range Equation 110
2.17.1 Friis Transmission Equation 110
2.17.2 Radar Range Equation 112
2.17.3 Antenna Radar Cross Section 114
2.18 Antenna Temperature 118
2.19 Multimedia 122
References 125
Problems 127
Chapter 3 Radiation Integrals and Auxiliary Potential Functions 149
3.1 Introduction 149
3.2 The Vector Potential A for an Electric Current Source J 150
3.3 The Vector Potential F for A Magnetic Current Source M 152
3.4 Electric and Magnetic Fields for Electric (J) and Magnetic (M) Current Sources 153
3.5 Solution of the Inhomogeneous Vector Potential Wave Equation 154
3.6 Far-Field Radiation 158
3.7 Duality Theorem 159
3.8 Reciprocity and Reaction Theorems 160
3.8.1 Reciprocity for Two Antennas 162
3.8.2 Reciprocity for Antenna Radiation Patterns 163
References 165
Problems 165
Chapter 4 Linear Wire Antennas 167
4.1 Introduction 167
4.2 Infinitesimal Dipole 167
4.2.1 Radiated Fields 167
4.2.2 Power Density and Radiation Resistance 170
4.2.3 Radian Distance and Radian Sphere 172
4.2.4 Near-Field (kr ? 1) Region 173
4.2.5 Intermediate-Field (kr > 1) Region
4.2.6 Far-Field (kr ? 1) Region 175
4.2.7 Directivity 176
4.3 Small Dipole 177
4.4 Region Separation 180
4.4.1 Far-Field (Fraunhofer) Region 182
4.4.2 Radiating Near-Field (Fresnel) Region 184
4.4.3 Reactive Near-Field Region 185
4.5 Finite Length Dipole 186
4.5.1 Current Distribution 186
4.5.2 Radiated Fields: Element Factor, Space Factor, and Pattern Multiplication 186
4.5.3 Power Density, Radiation Intensity, and Radiation Resistance 188
4.5.4 Directivity 194
4.5.5 Input Resistance 195
4.5.6 Finite Feed Gap 197
4.6 Half-Wavelength Dipole 198
4.7 Linear Elements Near or On Infinite Perfect Electric Conductors (PEC), Perfect Magnetic Conductors (PMC) and Electromagnetic Band-Gap (EBG) Surfaces 201
4.7.1 Ground Planes: Electric and Magnetic 202
4.7.2 Image Theory 204
4.7.3 Vertical Electric Dipole 205
4.7.4 Approximate Formulas for Rapid Calculations and Design 213
4.7.5 Mobile Communication Devices and Antennas for Mobile Communication Systems 214
4.7.6 Horizontal Electric Dipole 217
4.8 Ground Effects 225
4.8.1 Vertical Electric Dipole 226
4.8.2 Horizontal Electric Dipole 227
4.8.3 PEC, PMC and EBG Surfaces 229
4.8.4 Earth Curvature 233
4.9 Computer Codes 238
4.10 Multimedia 238
References 240
Problems 242
Chapter 5 Loop Antennas 257
5.1 Introduction 257
5.2 Small Circular Loop 258
5.2.1 Radiated Fields 258
5.2.2 Small Loop and Infinitesimal Magnetic Dipole 263
5.2.3 Power Density and Radiation Resistance 263
5.2.4 Near-Field (kr ? 1) Region 267
5.2.5 Far-Field (kr ? 1) Region 267
5.2.6 Radiation Intensity and Directivity 268
5.2.7 Equivalent Circuit 269
5.3 Circular Loop of Constant Current 272
5.3.1 Radiated Fields 272
5.3.2 Power Density, Radiation Intensity, Radiation Resistance, and Directivity 274
5.4 Circular Loop with Nonuniform Current 281
5.4.1 Arrays 288
5.4.2 Design Procedure 289
5.5 Ground and Earth Curvature Effects for Circular Loops 290
5.6 Polygonal Loop Antennas 291
5.7 Ferrite Loop 292
5.7.1 Radiation Resistance 292
5.7.2 Ferrite-Loaded Receiving Loop 293
5.8 Mobile Communication Systems Applications 294
5.9 Multimedia 294
References 297
Problems 299
Chapter 6 Arrays: Linear, Planar, and Circular 307
6.1 Introduction 307
6.2 Two-Element Array 308
6.3 N-Element Linear Array: Uniform Amplitude and Spacing 315
6.3.1 Broadside Array 319
6.3.2 Ordinary End-Fire Array 321
6.3.3 Phased (Scanning) Array 324
6.3.4 Hansen-Woodyard End-Fire Array 326
6.4 N-Element Linear Array: Directivity 334
6.4.1 Broadside Array 335
6.4.2 Ordinary End-Fire Array 337
6.4.3 Hansen-Woodyard End-Fire Array 339
6.5 Design Procedure 340
6.6 N-Element Linear Array: Three-Dimensional Characteristics 341
6.6.1 N-Elements Along Z-Axis 341
6.6.2 N-Elements Along X- or Y-Axis 342
6.7 Rectangular-to-Polar Graphical Solution 344
6.8 N-Element Linear Array: Uniform Spacing, Nonuniform Amplitude 345
6.8.1 Array Factor 347
6.8.2 Binomial Array 348
6.8.3 Dolph-Tschebyscheff Array: Broadside 352
6.8.4 Tschebysheff Design: Scanning 366
6.9 Superdirectivity 367
6.9.1 Efficiency and Directivity 368
6.9.2 Designs with Constraints 368
6.10 Planar Array 370
6.10.1 Array Factor 370
6.10.2 Beamwidth 376
6.10.3 Directivity 381
6.11 Design Considerations 382
6.12 Circular Array 385
6.12.1 Array Factor 385
6.13 Multimedia 389
References 389
Problems 390
Chapter 7 Antenna Synthesis and Continuous Sources 407
7.1 Introduction 407
7.2 Continuous Sources 408
7.2.1 Line-Source 408
7.2.2 Discretization of Continuous Sources 409
7.3 Schelkunoff Polynomial Method 409
7.4 Fourier Transform Method 414
7.4.1 Line-Source 414
7.4.2 Linear Array 417
7.5 Woodward-Lawson Method 420
7.5.1 Line-Source 421
7.5.2 Linear Array 425
7.6 Taylor Line-Source (Tschebyscheff-Error) 426
7.6.1 Design Procedure 428
7.7 Taylor Line-Source (One-Parameter) 430
7.8 Triangular, Cosine, and Cosine-Squared Amplitude Distributions 437
7.9 Line-Source Phase Distributions 438
7.10 Continuous Aperture Sources 439
7.10.1 Rectangular Aperture 440
7.10.2 Circular Aperture 440
7.11 Multimedia 442
References 442
Problems 443
Chapter 8 Integral Equations, Moment Method, and Self and Mutual Impedances 453
8.1 Introduction 453
8.2 Integral Equation Method 454
8.2.1 Electrostatic Charge Distribution 454
8.2.2 Integral Equation 461
8.3 Finite Diameter Wires 461
8.3.1 Pocklington’s Integral Equation 462
8.3.2 Hallén’s Integral Equation 466
8.3.3 Source Modeling 467
8.4 Moment Method Solution 470
8.4.1 Basis (Expansion) Functions 471
8.4.2 Weighting (Testing) Functions 475
8.5 Self-Impedance 477
8.5.1 Integral Equation-Moment Method 477
8.5.2 Induced EMF Method 480
8.6 Mutual Impedance Between Linear Elements 485
8.6.1 Integral Equation-Moment Method 487
8.6.2 Induced EMF Method 489
8.7 Mutual Coupling in Arrays 496
8.7.1 Coupling in the Transmitting Mode 496
8.7.2 Coupling in the Receiving Mode 498
8.7.3 Mutual Coupling on Array Performance 498
8.7.4 Coupling in an Infinite Regular Array 498
8.7.5 Active Element Pattern in an Array 500
8.8 Multimedia 502
References 502
Problems 504
Chapter 9 Broadband Dipoles and Matching Techniques 507
9.1 Introduction 507
9.2 Biconical Antenna 509
9.2.1 Radiated Fields 509
9.2.2 Input Impedance 512
9.3 Triangular Sheet, Flexible and Conformal Bow-Tie, and Wire Simulation 514
9.4 Vivaldi Antenna 518
9.5 Cylindrical Dipole 522
9.5.1 Bandwidth 523
9.5.2 Input Impedance 523
9.5.3 Resonance and Ground Plane Simulation 525
9.5.4 Radiation Patterns 525
9.5.5 Equivalent Radii 526
9.6 Folded Dipole 527
9.7 Discone and Conical Skirt Monopole 534
9.8 Matching Techniques 535
9.8.1 Stub-Matching 535
9.8.2 Quarter-Wavelength Transformer 536
9.8.3 Baluns and Transformers 543
9.9 Multimedia 545
References 546
Problems 547
Chapter 10 Traveling Wave and Broadband Antennas 555
10.1 Introduction 555
10.2 Traveling Wave Antennas 555
10.2.1 Long Wire 557
10.2.2 V Antenna 565
10.2.3 Rhombic Antenna 570
10.3 Broadband Antennas 571
10.3.1 Helical Antenna 571
10.3.2 Electric-Magnetic Dipole 581
10.3.3 Yagi-Uda Array of Linear Elements 581
10.3.4 Yagi-Uda Array of Loops 601
10.4 Multimedia 602
References 602
Problems 604
Chapter 11 Frequency Independent Antennas, Antenna Miniaturization, and Fractal Antennas 613
11.1 Introduction 613
11.2 Theory 614
11.3 Equiangular Spiral Antennas 615
11.3.1 Planar Spiral 616
11.3.2 Conical Spiral 620
11.4 Log-Periodic Antennas 620
11.4.1 Planar and Wire Surfaces 621
11.4.2 Dipole Array 624
11.4.3 Design of Dipole Array 630
11.5 Fundamental Limits of Electrically Small Antennas 636
11.6 Antenna Miniaturization 641
11.6.1 Monopole Antenna 642
11.6.2 Patch Antennas 648
11.6.3 Antenna Miniaturization Using Metamaterials 648
11.7 Fractal Antennas 649
11.8 Multimedia 655
References 655
Problems 657
Chapter 12 Aperture Antennas 661
12.1 Introduction 661
12.2 Field Equivalence Principle: Huygens’ Principle 661
12.3 Radiation Equations 667
Summary 669
12.4 Directivity 670
12.5 Rectangular Apertures 670
12.5.1 Uniform Distribution on an Infinite Ground Plane 672
12.5.2 Uniform Distribution in Space 683
12.5.3 TE10-Mode Distribution on an Infinite Ground Plane 685
12.5.4 Beam Efficiency 688
12.6 Circular Apertures 689
12.6.1 Uniform Distribution on an Infinite Ground Plane 691
12.6.2 TE11-Mode Distribution on an Infinite Ground Plane 693
12.6.3 Beam Efficiency 697
12.7 Design Considerations 697
12.7.1 Rectangular Aperture 699
12.7.2 Circular Aperture 700
12.8 Babinet’s Principle 702
12.9 Fourier Transforms in Aperture Antenna Theory 706
12.9.1 Fourier Transforms-Spectral Domain 706
12.9.2 Radiated Fields 707
12.9.3 Asymptotic Evaluation of Radiated Field 711
12.9.4 Dielectric-Covered Apertures 716
12.9.5 Aperture Admittance 717
12.10 Ground Plane Edge Effects: The Geometrical Theory of Diffraction 724
12.11 Multimedia 729
References 729
Problems 731
Chapter 13 Horn Antennas 741
13.1 Introduction 741
13.2 E-Plane Sectoral Horn 741
13.2.1 Aperture Fields 741
13.2.2 Radiated Fields 744
13.2.3 Directivity 750
13.3 H-Plane Sectoral Horn 755
13.3.1 Aperture Fields 755
13.3.2 Radiated Fields 756
13.3.3 Directivity 760
13.4 Pyramidal Horn 765
13.4.1 Aperture Fields, Equivalent, and Radiated Fields 766
13.4.2 Directivity 770
13.4.3 Design Procedure 776
13.5 Conical Horn 778
13.6 Corrugated Horn 783
13.7 Aperture-Matched Horns 788
13.8 Multimode Horns 791
13.9 Dielectric-Loaded Horns 793
13.10 Phase Center 795
13.11 Multimedia 796
References 797
Problems 800
Chapter 14 Microstrip and Mobile Communications Antennas 805
14.1 Introduction 805
14.1.1 Basic Characteristics 806
14.1.2 Feeding Methods 807
14.1.3 Methods of Analysis 809
14.2 Rectangular Patch 810
14.2.1 Transmission-Line Model 810
14.2.2 Cavity Model 820
14.2.3 Directivity 833
14.3 Circular Patch 837
14.3.1 Electric and Magnetic Fields—TMzmnp 838
14.3.2 Resonant Frequencies 839
14.3.3 Design 840
14.3.4 Equivalent Current Densities and Fields Radiated 841
14.3.5 Conductance and Directivity 843
14.3.6 Resonant Input Resistance 844
14.4 Quality Factor, Bandwidth, and Efficiency 845
14.5 Input Impedance 848
14.6 Coupling 849
14.7 Circular Polarization 852
14.8 Arrays and Feed Networks 854
14.9 Antennas for Mobile Communications 859
14.9.1 Planar Inverted-F Antenna (PIFA) 860
14.9.2 Slot Antenna 863
14.9.3 Inverted-F Antenna (IFA) 865
14.9.4 Multiband Antennas for Mobile Units 868
14.10 Dielectric Resonator Antennas 869
14.10.1 Basic DRA Geometries 870
14.10.2 Methods of Analysis and Design 871
14.10.3 Cavity Model Resonant Frequencies (TE and TM Modes) 872
14.10.4 Hybrid Modes: Resonant Frequencies and Quality Factors 874
14.10.5 Radiated Fields 877
14.11 Multimedia 880
References 884
Problems 889
Chapter 15 Reflector Antennas 897
15.1 Introduction 897
15.2 Plane Reflector 897
15.3 Corner Reflector 898
15.3.1 90? Corner Reflector 900
15.3.2 Other Corner Reflectors 902
15.4 Parabolic Reflector 906
15.4.1 Front-Fed Parabolic Reflector 909
15.4.2 Cassegrain Reflectors 937
15.5 Spherical Reflector 942
15.6 Multimedia 945
References 945
Problems 947
Chapter 16 Smart Antennas 953
16.1 Introduction 953
16.2 Smart-Antenna Analogy 953
16.3 Cellular Radio Systems Evolution 955
16.3.1 Omnidirectional Systems 955
16.3.2 Smart-Antenna Systems 958
16.4 Signal Propagation 961
16.5 Smart Antennas’ Benefits 964
16.6 Smart Antennas’ Drawbacks 965
16.7 Antenna 965
16.7.1 Array Design 965
16.7.2 Linear Array 966
16.7.3 Planar Array 967
16.8 Antenna Beamforming 968
16.8.1 Overview of Direction-Of-Arrival (DOA) Algorithms 969
16.8.2 Adaptive Beamforming 972
16.8.3 Mutual Coupling 975
16.8.4 Optimal Beamforming Techniques 977
16.9 Mobile Ad hoc Networks (MANETs) 982
16.9.1 Overview of Mobile Ad hoc NETworks (MANETs) 982
16.9.2 MANETs Employing Smart-Antenna Systems 983
16.10 Smart-Antenna System Design, Simulation, and Results 986
16.10.1 Design Process 986
16.10.2 Single Element—Microstrip Patch Design 987
16.10.3 Rectangular Patch 987
16.10.4 Array Design 989
16.10.5 4 × 4 Planar Array versus 8 × 8 Planar Array 991
16.10.6 Adaptive Beamforming 991
16.11 Beamforming, Diversity Combining, Rayleigh-Fading, and Trellis-Coded Modulation 994
16.12 Other Geometries 997
16.13 Multimedia 998
References 998
Problems 1002
Chapter 17 Antenna Measurements 1003
17.1 Introduction 1003
17.2 Antenna Ranges 1004
17.2.1 Reflection Ranges 1005
17.2.2 Free-Space Ranges 1005
17.2.3 Compact Ranges 1008
17.2.4 Near-Field/Far-Field Methods 1014
17.3 Radiation Patterns 1022
17.3.1 Instrumentation 1023
17.3.2 Amplitude Pattern 1025
17.3.3 Phase Measurements 1025
17.4 Gain Measurements 1025
17.4.1 Realized-Gain Measurements 1028
17.4.2 Gain-Transfer (Gain-Comparison) Measurements 1031
17.5 Directivity Measurements 1032
17.6 Radiation Efficiency 1034
17.7 Impedance Measurements 1034
17.8 Current Measurements 1036
17.9 Polarization Measurements 1036
17.10 Scale Model Measurements 1041
17.10.1 Gain (Amplitude) Measurements, Simulations and Comparisons 1042
17.10.2 Echo Area (RCS) Measurements, Simulations and Comparisons 1043
References 1046
Appendix I: f(x) =sin(x)/x 1049
Appendix II: fN(x) =|sin(Nx)/N sin(x)| N = 1, 3, 5, 10, 20 1051
Appendix III: Cosine and Sine Integrals 1053
Appendix IV: Fresnel Integrals 1055
Appendix V: Bessel Functions 1057
Appendix VI: Identities 1063
Appendix VII: Vector Analysis 1067
Appendix VIII: Method of Stationary Phase 1077
Appendix IX: Television, Radio, Telephone, and Radar Frequency Spectrums 1083
Index 1087
EULA 1095

Erscheint lt. Verlag 17.12.2015
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Antenna Arrays • Antenna miniaturization • Antennas & Propagation • Antenne • Aperture Antennas • Bessel functions • Broadband antennas • Broadband Dipoles • Cylindrical Dipole • Drahtlose Kommunikation • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • fractal antennas • Fresnel integrals • Horn Antennas • Integral equations • Loop Antennas • microstrip antennas • Mobile & Wireless Communications • Mutual Coupling • Radiation Integrals • reflector antennas • Sende- u. Empfangseinrichtungen • Signal Processing • Signalverarbeitung • Smart Antennas • Vector analysis • Vivaldi Antenna • wireless communications
ISBN-13 9781119178989 / 9781119178989
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kommunikationssysteme mit EIB/KNX, LON, BACnet und Funk

von Thomas Hansemann; Christof Hübner; Kay Böhnke

eBook Download (2025)
Hanser (Verlag)
CHF 38,95
Verfahren zur Berechnung elektrischer Energieversorgungsnetze

von Karl Friedrich Schäfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 107,45