Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Space Electronic Reconnaissance (eBook)

Localization Theories and Methods
eBook Download: PDF
2014
John Wiley & Sons (Verlag)
978-1-118-54221-7 (ISBN)

Lese- und Medienproben

Space Electronic Reconnaissance - Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Xhou, Qiang Li
Systemvoraussetzungen
123,99 inkl. MwSt
(CHF 119,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Presents the theories and applications of determining the position of an object in space through the use of satellites

As the importance of space reconnaissance technology intensifies, more and more countries are investing money in building their own space reconnaissance satellites. Due to the secrecy and sensitivity of the operations, it is hard to find published papers and journals on the topic outside of military and governmental agencies.  This book aims to fill the gap by presenting the various applications and basic principles of a very modern technology. The space electronic reconnaissance system in mono/multi-satellite platforms is a critical feature which can be used for detection, localization, tracking or identification of the various kinds of signal sources from radar, communication or navigation systems.

Localization technology in space electronic reconnaissance uses single or multiple satellite receivers which receive signals from radar, communication and navigation emitters in the ground, ocean and space to specify the location of emitter.   The methods, principles and technologies of different space electronic reconnaissance localization systems are introduced in this book, as are their performances, and the various methods are explained and analysed.  Digital simulations illustrate the results.

  • Presents the theories and applications of determining the position of an object in space through the use of satellites
  • Introduces methods, principles and technologies of localization and tracking in the space electronic reconnaissance system, the localization algorithm and error in satellite system and near space platform system, and the tracking algorithm and error in single satellite-to-satellite tracking system
  • Provides the fundamentals, the mathematics, the limitations, the measurements, and systems, of localization with emphasis on defence industry applications

Highly relevant for Engineers working in avionics, radar, communication, navigation and electronic warfare.

Chapters include:- the introduction of space electronic reconnaissance localization technology, knowledge about the satellite orbit and basic terminology of passive localization, single satellite geolocation technology based on direction finding, three-satellite geolocation technology based on time difference of arrival (TDOA), two-satellite geolocation technology based on TDOA and frequency difference of arrival (FDOA), the single satellite localization technology based on kinematics theory, localization principles of near-space platform electronic reconnaissance systems, the orbit determination of single satellite-to-satellite tracking using bearings only(BO) information, the orbit determination of single satellite-to-satellite tracking using bearings and frequency information, the orbit determination of single satellite-to-satellite tracking using frequency only(FO) information. Each chapter ends with a problem and solution section, some using Matlab code.



Fucheng Guo, National University of Defense Technology, P.R. China

Yun Fan
, National University of Defense Technology, P.R. China

Yiyu Zhou
, National University of Defense Technology, P.R. China

Caigen Zhou
, National University of Defense Technology, P.R. China

Qiang Li
, National University of Defense Technology, P.R. China
Presents the theories and applications of determining the position of an object in space through the use of satellites As the importance of space reconnaissance technology intensifies, more and more countries are investing money in building their own space reconnaissance satellites. Due to the secrecy and sensitivity of the operations, it is hard to find published papers and journals on the topic outside of military and governmental agencies. This book aims to fill the gap by presenting the various applications and basic principles of a very modern technology. The space electronic reconnaissance system in mono/multi-satellite platforms is a critical feature which can be used for detection, localization, tracking or identification of the various kinds of signal sources from radar, communication or navigation systems. Localization technology in space electronic reconnaissance uses single or multiple satellite receivers which receive signals from radar, communication and navigation emitters in the ground, ocean and space to specify the location of emitter. The methods, principles and technologies of different space electronic reconnaissance localization systems are introduced in this book, as are their performances, and the various methods are explained and analysed. Digital simulations illustrate the results. Presents the theories and applications of determining the position of an object in space through the use of satellites Introduces methods, principles and technologies of localization and tracking in the space electronic reconnaissance system, the localization algorithm and error in satellite system and near space platform system, and the tracking algorithm and error in single satellite-to-satellite tracking system Provides the fundamentals, the mathematics, the limitations, the measurements, and systems, of localization with emphasis on defence industry applications Highly relevant for Engineers working in avionics, radar, communication, navigation and electronic warfare. Chapters include:- the introduction of space electronic reconnaissance localization technology, knowledge about the satellite orbit and basic terminology of passive localization, single satellite geolocation technology based on direction finding, three-satellite geolocation technology based on time difference of arrival (TDOA), two-satellite geolocation technology based on TDOA and frequency difference of arrival (FDOA), the single satellite localization technology based on kinematics theory, localization principles of near-space platform electronic reconnaissance systems, the orbit determination of single satellite-to-satellite tracking using bearings only(BO) information, the orbit determination of single satellite-to-satellite tracking using bearings and frequency information, the orbit determination of single satellite-to-satellite tracking using frequency only(FO) information. Each chapter ends with a problem and solution section, some using Matlab code.

Fucheng Guo, National University of Defense Technology, P.R. China Yun Fan, National University of Defense Technology, P.R. China Yiyu Zhou, National University of Defense Technology, P.R. China Caigen Zhou, National University of Defense Technology, P.R. China Qiang Li, National University of Defense Technology, P.R. China

Cover 1
Title Page 5
Copyright 6
Contents 9
Preface 15
Acknowledgments 17
Acronyms 19
Chapter 1 Introduction to Space Electronic Reconnaissance Geolocation 23
1.1 Introduction 23
1.2 An Overview of Space Electronic Reconnaissance Geolocation Technology 25
1.2.1 Geolocation of an Emitter on the Earth 25
1.2.2 Tracking of an Emitter on a Satellite 30
1.2.3 Geolocation by Near-Space Platforms 31
1.3 Structure of a Typical SER System 31
References 33
Chapter 2 Fundamentals of Satellite Orbit and Geolocation 35
2.1 An Introduction to the Satellite and Its Orbit 35
2.1.1 Kepler's Three Laws 35
2.1.2 Classification of Satellite Orbits 37
2.2 Orbit Parameters and State of Satellite 40
2.2.1 Orbit Elements of a Satellite 40
2.2.2 Definition of Several Arguments of Perigee and Their Correlations 42
2.3 Definition of Coordinate Systems and Their Transformations 43
2.3.1 Definition of Coordinate Systems 43
2.3.2 Transformation between Coordinate Systems 47
2.4 Spherical Model of the Earth for Geolocation 49
2.4.1 Regular Spherical Model for Geolocation 49
2.4.2 Ellipsoid Model of the Earth 49
2.5 Coverage Area of a Satellite 52
2.5.1 Approximate Calculation Method for the Coverage Area 52
2.5.2 Examples of Calculation of the Coverage Area 53
2.5.3 Side Reconnaissance Coverage Area 55
2.6 Fundamentals of Geolocation 55
2.6.1 Spatial Geolocation Plane 56
2.6.2 Spatial Line of Position (LOP) 56
2.7 Measurement Index of Geolocation Errors 60
2.7.1 General Definition of Error 60
2.7.2 Geometrical Dilution of Precision (GDOP) 62
2.7.3 Graphical Representation of the Geolocation Error 62
2.7.4 Spherical Error Probability (SEP) and Circular Error Probability (CEP) 63
2.8 Observability Analysis of Geolocation 66
References 67
Chapter 3 Single-Satellite Geolocation System Based on Direction Finding 69
3.1 Direction Finding Techniques 69
3.1.1 Amplitude Comparison DF Technique 70
3.1.2 Interferometer DF Technique 71
3.1.3 Array-Based DF Technique 77
3.1.4 Other DF Techniques 79
3.2 Single-Satellite LOS Geolocation Method and Analysis 79
3.2.1 Model of LOS Geolocation 79
3.2.2 Solution of LOS Geolocation 81
3.2.3 CRLB of the LOS Geolocation Error 82
3.2.4 Simulation and Analysis of the LOS Geolocation Error 84
3.2.5 Geometric Distribution of the LOS Geolocation Error 85
3.3 Multitimes Statistic LOS Geolocation 86
3.3.1 Single-Satellite Multitimes Triangulation 87
3.3.2 Average for Single-Satellite Multitimes Geolocation 88
3.3.3 Weighted Average for Single-Satellite Multitimes Geolocation 89
3.3.4 Simulation of Single-Satellite LOS Geolocation 89
3.4 Single HEO Satellite LOS Geolocation 95
3.4.1 Analysis of Single GEO Satellite LOS Geolocation 95
3.4.2 Geosynchronous Satellite Multitimes LOS Geolocation 96
References 99
Chapter 4 Multiple Satellites Geolocation Based on TDOA Measurement 101
4.1 Three-Satellite Geolocation Based on a Regular Sphere 102
4.1.1 Three-Satellite Geolocation Solution Method 102
4.1.2 Multisatellite TDOA Geolocation Method 104
4.1.3 CRLB of a Multisatellite TDOA Geolocation Error 107
4.1.4 Osculation Error of the Spherical Earth Model 108
4.2 Three-Satellite Geolocation Based on the WGS-84 Earth Surface Model 110
4.2.1 Analytical Method 111
4.2.2 Spherical Iteration Method 114
4.2.3 Newton Iteration Method 116
4.2.4 Performance Comparison among the Three Solution Methods 118
4.2.5 Altitude Input Location Algorithm 122
4.3 Ambiguity and No-Solution Problems of Geolocation 124
4.3.1 Ambiguity Problem of Geolocation 124
4.3.2 No-Solution Problem of Geolocation 128
4.4 Error Analysis of Three-Satellite Geolocation 131
4.4.1 Analysis of the Random Geolocation Error 131
4.4.2 Analysis of Bias Caused by Altitude Assumption 134
4.4.3 Influence of Change of the Constellation Geometric Configuration on GDOP 136
4.5 Calibration Method of the Three-Satellite TDOA Geolocation System 139
4.5.1 Four-Station Calibration Method and Analysis 139
4.5.2 Three-Station Calibration Method 147
References 152
Chapter 5 Dual-Satellite Geolocation Based on TDOA and FDOA 155
5.1 Introduction of TDOA-FDOA Geolocation by a Dual-Satellite 155
5.1.1 Explanation of Dual-Satellite Geolocation Theory 155
5.1.2 Structure of Dual-Satellite TDOA-FDOA Geolocation System 156
5.2 Dual LEO Satellite TDOA-FDOA Geolocation Method 158
5.2.1 Geolocation Model 158
5.2.2 Solution Method of Algebraic Analysis 160
5.2.3 Approximate Analytical Method for Same-Orbit Satellites 163
5.2.4 Method for Eliminating an Ambiguous Geolocation Point 165
5.3 Error Analysis for TDOA-FDOA Geolocation 166
5.3.1 Analytic Method for the Geolocation Error 166
5.3.2 GDOP of the Dual LEO Satellite Geolocation Error 168
5.3.3 Analysis of Various Factors Influencing GDOP 173
5.4 Dual HEO Satellite TDOA-FDOA Geolocation 174
5.4.1 Dual Geosynchronous Orbit Satellites TDOA-FDOA Geolocation 174
5.4.2 Calibration Method Based on Reference Sources 177
5.4.3 Calibration Method Using Multiple Reference Sources 181
5.4.4 Flow of Calibration and Geolocation 186
5.5 Method of Measuring TDOA and FDOA 187
5.5.1 The Cross-Ambiguity Function 187
5.5.2 Theoretical Analysis on the TDOA-FDOA Measurement Performance 188
5.5.3 Segment Correlation Accumulation Method for CAF Computation 190
5.5.4 Resolution of Multiple Signals of the Same Time and Same Frequency 194
References 196
Chapter 6 Single-Satellite Geolocation System Based on the Kinematic Principle 199
6.1 Single-Satellite Geolocation Model 199
6.2 Single-Satellite Single-Antenna Frequency-Only Based Geolocation 201
6.2.1 Frequency-Only Based Geolocation Method 201
6.2.2 Analysis of the Geolocation Error 202
6.2.3 Analysis of the Frequency-Only Based Geolocation Error 203
6.3 Single-Satellite Geolocation by the Frequency Changing Rate Only 205
6.3.1 Model of Geolocation by the Frequency Changing Rate Only 205
6.3.2 CRLB of the Geolocation Error 207
6.3.3 Geolocation Simulation 208
6.4 Single-Satellite Single-Antenna TOA-Only Geolocation 208
6.4.1 Model and Method of TOA-Only Geolocation 208
6.4.2 Analysis of the Geolocation Error 211
6.4.3 Geolocation Simulation 214
6.5 Single-Satellite Interferometer Phase Rate of Changing-Only Geolocation 214
6.5.1 Geolocation Model 214
6.5.2 Geolocation Algorithm 217
6.5.3 CRLB of the Geolocation Error 218
6.5.4 Calculation Analysis of the Geolocation Error 219
References 223
Chapter 7 Geolocation by Near-Space Platforms 225
7.1 An Overview of Geolocation by Near-Space Platforms 225
7.1.1 Near-Space Platform Overview 225
7.1.2 Geolocation by the Near-Space Platform 226
7.2 Multiplatform Triangulation 226
7.2.1 Theory of 2D Triangulation 226
7.2.2 Error Analysis for Dual-Station Triangulation 227
7.2.3 Optimal Geometric Configuration of Observers 229
7.3 Multiplatform TDOA Geolocation 233
7.3.1 Theory of Multiplatform TDOA Geolocation 233
7.3.2 2D TDOA Geolocation Algorithm 234
7.3.3 TDOA Geolocation Using the Altitude Assumption 237
7.3.4 3D TDOA Geolocation Algorithm 237
7.4 Localization Theory by a Single Platform 239
7.4.1 Measurement Model of Localization 240
7.4.2 A 2D Approximate Localization Method 241
7.4.3 MGEKF (Modified Gain Extended Kalman Filter) Localization Method 243
7.4.4 Simulation 245
References 247
Chapter 8 Satellite-to-Satellite Passive Orbit Determination by Bearings Only 249
8.1 Introduction 249
8.2 Model and Method of Bearings-Only Passive Tracking 249
8.2.1 Mathematic Model in the Case of the Two-Body Problem 250
8.2.2 Tracking Method in the Case of the Two-Body Model 251
8.2.3 Mathematical Model Considering J2 Perturbation of Earth Oblateness 254
8.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 255
8.3 System Observability Analysis 257
8.3.1 Description Method for System Observability 257
8.3.2 Influence of Factors on the State Equation 258
8.3.3 Influence of Factors on the Measurement Equation 259
8.4 Tracking Simulation and Analysis 261
8.4.1 Simulation in the Case of the Two-Body Model 263
8.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 273
8.5 Summary 280
References 281
Chapter 9 Satellite-to-Satellite Passive Tracking Based on Angle and Frequency Information 283
9.1 Introduction of Passive Tracking 283
9.2 Tracking Model and Method 284
9.2.1 Mathematic Model in the Case of the Two-Body Model 284
9.2.2 Tracking Method in the Case of the Two-Body Model 285
9.2.3 Mathematical Models Considering J2 Perturbation of Earth Oblateness 288
9.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 289
9.3 System Observability Analysis 290
9.3.1 Influence of Factors of the State Equation 291
9.3.2 Influence of Factors of the Measurement Equation 291
9.4 Simulation and Its Analysis 299
9.4.1 Simulation in the Case of the Two-Body Model 300
9.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 318
9.5 Summary 330
References 331
Chapter 10 Satellite-to-Satellite Passive Orbit Determination Based on Frequency Only 333
10.1 The Theory and Mathematical Model of Passive Orbit Determination Based on Frequency Only 335
10.1.1 The Theory of Orbit Determination Based on Frequency Only 335
10.1.2 The System Model in the Case of the Two-Body Model 335
10.1.3 The System Model for J2 Perturbation of Earth Oblateness 337
10.2 Satellite-to-Satellite Passive Orbit Determination Based on PSO and Frequency 339
10.2.1 Introduction of Particle Swarm Optimization (PSO) 339
10.2.2 Orbit Determination Method Based on the PSO Algorithm 341
10.3 System Observability Analysis 342
10.3.1 Simulation Scenario 1 344
10.3.2 Simulation Scenario 2 345
10.3.3 Simulation Scenario 3 347
10.4 CRLB of the Orbit Parameter Estimation Error 351
10.5 Orbit Determination and Tracking Simulation and Its Analysis 355
10.5.1 Simulation in the Case of the Two-Body Model 356
10.5.2 Simulation in the Case of Considering the Perturbation 369
References 370
Chapter 11 A Prospect of Space Electronic Reconnaissance Technology 371
Appendix: Transformation of Orbit Elements, State and Coordinates of Satellites in Two-Body Motion 373
Index 377

Erscheint lt. Verlag 10.4.2014
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Luft- / Raumfahrttechnik
Schlagworte Aeronautic & Aerospace Engineering • Caigen Zhou • defense industry • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • ELINT satellites • Fernerkundung • Fucheng Guo • Luft- u. Raumfahrttechnik • Maschinenbau • mechanical engineering • passive localization • Qiang Li • Reconnaissance satellite • Remote Sensing • Satellite communications • Satellitenkommunikation • satellite orbit • Space Electronic Reconnaissance: Localization Principles and Technologies • space electronic reconnaissance localization technology • Yiyu Zhou • Yun Fan
ISBN-10 1-118-54221-5 / 1118542215
ISBN-13 978-1-118-54221-7 / 9781118542217
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kommunikationssysteme mit EIB/KNX, LON, BACnet und Funk

von Thomas Hansemann; Christof Hübner; Kay Böhnke

eBook Download (2025)
Hanser (Verlag)
CHF 38,95
Verfahren zur Berechnung elektrischer Energieversorgungsnetze

von Karl Friedrich Schäfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 107,45