Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A Chemist's Guide to Valence Bond Theory - Sason Shaik, David Danovich, Philippe C. Hiberty

A Chemist's Guide to Valence Bond Theory

Insights into Chemical Bonding, Reactivity, and Excited States
Buch | Hardcover
480 Seiten
2026 | 2nd edition
John Wiley & Sons Inc (Verlag)
9781394238798 (ISBN)
CHF 258,35 inkl. MwSt
  • Noch nicht erschienen (ca. März 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Updated resource on theoretical aspects and applications of valence bond methods to chemical calculations

A Chemist’s Guide to Valence Bond Theory explains how to use valence bond theory to think concisely and rigorously and how to use VB computations. It familiarizes the reader with the various VB-based computational tools and methods available today and their use for a given chemical problem and provides samples of inputs/outputs that instruct the reader on how to interpret the results. The book also covers the theoretical basis of Valence Bond (VB) theory and its applications to chemistry in the ground- and excited-states. Applications discussed in the book include sets of exercises and corresponding answers on bonding problems, organic reactions, inorganic/organometallic reactions, and bioinorganic/ biochemical reactions.

This Second Edition contains a new chapter on chemical bonds which includes sections on covalent, ionic, and charge-shift bonds as well as triplet bond pairs, a new chapter on the Breathing-Orbital VB method with its application to molecular excited states, and several new sections discussing recent developments such as DFT-based methods and solvent effects via the Polarizable Continuum Model (PCM).

A Chemist’s Guide to Valence Bond Theory includes information on:



Writing and representing valence bond wave functions, overlaps between determinants, and valence bond formalism using the exact Hamiltonian
Generating a set of valence bond structures and mapping a molecular orbital-configuration interaction wave function into a valence bond wave function
The alleged “failures” of valence bond theory, such as the triplet ground state of dioxygen, and whether or not these failures are “real”
Spin Hamiltonian valence bond theory and its applications to organic radicals, diradicals, and polyradicals

A Chemist’s Guide to Valence Bond Theory is an essential reference on the subject for chemists who are not necessarily experts on theory but have some background in quantum chemistry. The text is also appropriate for upper undergraduate and graduate students in advanced courses on valence bond theory.

Sason Shaik is a Saerree K. and Louis P. Fiedler Emeritus Professor of Chemistry at the Hebrew University. He has developed a number of new paradigms and concepts using valence bond theory and participated in the initiation of various valence bond methods. David Danovich is a senior computational chemist at the Institute of Chemistry in the Hebrew University, and an expert on VB calculations Philippe C. Hiberty is an Emeritus Director of Research at the Centre National de la Recherche Scientifique in the Université Paris-Saclay. He has developed the Breathing-Orbital VB method.

PREFACE

 

1 A Brief Story of Valence Bond Theory, Its Rivalry with

 

 Molecular Orbital Theory, Its Demise, and Resurgence 1

 

1.1 Roots of VB Theory 2

 

1.2 Origins of MO Theory and the Roots of VB–MO Rivalry 5

 

1.3 One Theory is Up the Other is Down 7

 

1.4 Mythical Failures of VB Theory: More Ground is

 

 Gained by MO Theory 8

 

1.5 Are the Failures of VB Theory Real? 12

 

1.5.1 The O2 Failure 12

 

1.5.2 The C4H4 Failure 13

 

1.5.3 The C5H5+ Failure 13

 

1.5.4 The Failure Associated with the Photoelectron Spectroscopy of CH4 13

 

1.6 Valence Bond is a Legitimate Theory Alongside

 

 Molecular Orbital Theory 14

 

1.7 Modern VB Theory: Valence Bond Theory is Coming

 

 of Age 14

 

2 A Brief Tour Through Some Valence Bond Outputs

 

 and Terminology 26

 

2.1 Valence Bond Output for the H2 Molecule 26

 

2.2 Valence Bond Mixing Diagrams 32

 

2.3 Valence Bond Output for the HF Molecule 33

 

3 Basic Valence Bond Theory 40

 

3.1 Writing and Representing Valence Bond Wave Functions 40

 

3.1.1 VB Wave Functions with Localized Atomic

 

 Orbitals 40

 

3.1.2 Valence Bond Wave Functions with

 

 Semilocalized AOs 41

 

3.1.3 Valence Bond Wave Functions with

 

 Fragment Orbitals 42

 

3.1.4 Writing Valence Bond Wave Functions

 

 Beyond the 2e/2c Case 43

 

3.1.5 Pictorial Representation of Valence Bond

 

 Wave Functions by Bond Diagrams 45

 

3.2 Overlaps between Determinants 45

 

3.3 Valence Bond Formalism Using the Exact Hamiltonian 46

 

3.3.1 Purely Covalent Singlet and Triplet

 

 Repulsive States 47

 

3.3.2 Configuration Interaction Involving Ionic

 

 Terms 49

 

3.4 Valence Bond Formalism Using an Effective

 

 Hamiltonian 49

 

3.5 Some Simple Formulas for Elementary Interactions 51

 

3.5.1 The Two-Electron Bond 51

 

3.5.2 Repulsive Interactions in Valence Bond

 

 Theory 52

 

3.5.3 Mixing of Degenerate Valence Bond

 

 Structures 53

 

3.5.4 Nonbonding Interactions in Valence Bond

 

 Theory 54

 

3.6 Structural Coefficients and Weights of Valence Bond

 

 Wave Functions 56

 

3.7 Bridges between Molecular Orbital and Valence Bond

 

 Theories 56

 

3.7.1 Comparison of Qualitative Valence Bond

 

 and Molecular Orbital Theories 57

 

3.7.2 The Relationship between Molecular Orbital

 

 and Valence Bond Wave Functions 58

 

3.7.3 Localized Bond Orbitals: A Pictorial Bridge

 

 between Molecular Orbital and Valence Bond

 

 Wave Functions 60

 

 Appendix 65

 

 3.A.1 Normalization Constants, Energies, Overlaps, and

 

 Matrix Elements of Valence Bond Wave Functions 65

 

 3.A.1.1 Energy and Self-Overlap of an Atomic

 

 Orbital- Based Determinant 66

 

 3.A.1.2 Hamiltonian Matrix Elements and Overlaps

 

 between Atomic Orbital-Based Determinants 68

 

 3.A.2 Simple Guidelines for Valence Bond Mixing 68

 

Exercises 70

 

Answers 74

 

4 Mapping Molecular Orbital—Configuration

 

 Interaction to Valence Bond Wave Functions 81

 

4.1 Generating a Set of Valence Bond Structures 81

 

4.2 Mapping a Molecular Orbital–Configuration Interaction

 

 Wave Function into a Valence Bond Wave Function 83

 

4.2.1 Expansion of Molecular Orbital Determinants

 

 in Terms of Atomic Orbital Determinants 83

 

4.2.2 Projecting the Molecular Orbital–Configuration

 

 Interaction Wave Function onto the Rumer

 

 Basis of Valence Bond Structures 85

 

4.2.3 An Example: The Hartree–Fock Wave

 

 Function of Butadiene 86

 

4.3 Using Half-Determinants to Calculate Overlaps

 

 between Valence Bond Structures 88

 

 Exercises 89

 

 Answers 90

 

5 Are the ‘‘Failures’’ of Valence Bond Theory Real? 94

 

5.1 Introduction 94

 

5.2 The Triplet Ground State of Dioxygen 94

 

5.3 Aromaticity–Antiaromaticity in Ionic Rings CnHn+/- 97

 

5.4 Aromaticity/Antiaromaticity in Neutral Rings 100

 

5.5 The Valence Ionization Spectrum of CH4 104

 

5.6 The Valence Ionization Spectrum of H2O and the

 

 ‘‘Rabbit-Ear’’ Lone Pairs 106

 

5.7 A Summary 109

 

 Exercises 111

 

 Answers 112

 

6 Valence Bond Diagrams for Chemical Reactivity 116

 

6.1 Introduction 116

 

6.2 Two Archetypal Valence Bond Diagrams 116

 

6.3 The Valence Bond State Correlation Diagram Model

 

 and Its General Outlook on Reactivity 117

 

6.4 Construction of Valence Bond State Correlation

 

 Diagrams for Elementary Processes 119

 

6.4.1 Valence Bond State Correlation Diagrams

 

 for Radical Exchange Reactions 119

 

6.4.2 Valence Bond State Correlation Diagrams

 

 for Reactions between Nucleophiles and

 

 Electrophiles 122

 

6.4.3 Generalization of Valence Bond State

 

 Correlation Diagrams for Reactions

 

 Involving Reorganization of Covalent Bonds 124

 

6.5 Barrier Expressions Based on the Valence Bond State

 

 Correlation Diagram Model 126

 

6.5.1 Some Guidelines for Quantitative Applications

 

 of the Valence Bond State Correlation Diagram

 

 Model 128

 

6.6 Making Qualitative Reactivity Predictions with the

 

 Valence Bond State Correlation Diagram 128

 

6.6.1 Reactivity Trends in Radical Exchange

 

 Reactions 130

 

6.6.2 Reactivity Trends in Allowed and Forbidden

 

 Reactions 132

 

6.6.3 Reactivity Trends in Oxidative–Addition

 

 Reactions 133

 

6.6.4 Reactivity Trends in Reactions between

 

 Nucleophiles and Electrophiles 136

 

6.6.5 Chemical Significance of the f Factor 138

 

6.6.6 Making Stereochemical Predictions with the

 

 VBSCD Model 138

 

6.6.7 Predicting Transition State Structures with

 

 the Valence Bond State Correlation Diagram

 

 Model 140

 

6.6.8 Trends in Transition State Resonance Energies 141

 

6.7 Valence Bond Configuration Mixing Diagrams: General

 

 Features 144

 

6.8 Valence Bond Configuration Mixing Diagram with Ionic

 

 Intermediate Curves 144

 

6.8.1 Valence Bond Configuration Mixing Diagrams

 

 for Proton-Transfer Processes 145

 

6.8.2 Insights from Valence Bond Configuration

 

 Mixing Diagrams: One Electron Less–One

 

 Electron More 146

 

6.8.3 Nucleophilic Substitution on Silicon: Stable

 

 Hypercoordinated Species 147

 

6.9 Valence Bond Configuration Mixing Diagram with

 

 Intermediates Nascent from ‘‘Foreign States’’ 149

 

6.9.1 The Mechanism of Nucleophilic Substitution

 

 of Esters 149

 

6.9.2 The SRN2 and SRN2c Mechanisms 150

 

6.10 Valence Bond State Correlation Diagram: A General

 

 Model for Electronic Delocalization in Clusters 153

 

 6.10.1 What is the Driving Force for the D6h

 

 Geometry of Benzene, s or p? 154

 

6.11 Valence Bond State Correlation Diagram: Application

 

 to Photochemical Reactivity 157

 

6.11.1 Photoreactivity in 3e/3c Reactions 158

 

6.11.2 Photoreactivity in 4e/3c Reactions 159

 

6.12 A Summary 163

 

 Exercises 171

 

 Answers 176

 

7 Using Valence Bond Theory to Compute and

 

 Conceptualize Excited States 193

 

7.1 Excited States of a Single Bond 194

 

7.2 Excited States of Molecules with Conjugated Bonds 196

 

7.2.1 Use of Molecular Symmetry to Generate

 

 Covalent Excited States Based on Valence

 

 Bond Theory 197

 

7.2.2 Covalent Excited States of Polyenes 209

 

7.3 A Summary 212

 

 Exercises 215

 

 Answers 216

 

8 Spin Hamiltonian Valence Bond Theory and its

 

 Applications to Organic Radicals, Diradicals, and

 

 Polyradicals 222

 

8.1 A Topological Semiempirical Hamiltonian 223

 

8.2 Applications 225

 

8.2.1 Ground States of Polyenes and Hund’s Rule

 

 Violations 225

 

8.2.2 Spin Distribution in Alternant Radicals 227

 

8.2.3 Relative Stabilities of Polyenes 228

 

8.2.4 Extending Ovchinnikov’s Rule to Search for

 

 Bistable Hydrocarbons 230

 

8.3 A Summary 231

 

 Exercises 232

 

 Answers 234

 

9 Currently Available Ab Initio Valence Bond

 

 Computational Methods and their Principles 238

 

9.1 Introduction 238

 

9.2 Valence Bond Methods Based on Semilocalized Orbitals 239

 

9.2.1 The Generalized Valence Bond Method 240

 

9.2.2 The Spin-Coupled Valence Bond Method 242

 

9.2.3 The CASVB Method 243

 

9.2.4 The Generalized Resonating Valence Bond

 

 Method 245

 

9.2.5 Multiconfiguration Valence Bond Methods

 

 with Optimized Orbitals 246

 

9.3 Valence Bond Methods Based on Localized Orbitals 247

 

9.3.1 Valence Bond Self-Consistent Field Method

 

 with Localized Orbitals 247

 

9.3.2 The Breathing-Orbital Valence Bond Method 249

 

9.3.3 The Valence Bond Configuration Interaction

 

 Method 252

 

9.4 Methods for Getting Valence Bond Quantities from

 

 Molecular Orbital-Based Procedures 253

 

9.4.1 Using Standard Molecular Orbital Software

 

 to Compute Single Valence Bond Structures

 

 or Determinants 253

 

9.4.2 The Block-Localized Wave Function and

 

 Related Methods 254

 

9.5 A Valence Bond Method with Polarizable Continuum

 

 Model 255

 

 Appendix 257

 

 9.A.1 Some Available Valence Bond Programs 257

 

 9.A.1.1 The TURTLE Software 257

 

 9.A.1.2 The XMVB Program 257

 

 9.A.1.3 The CRUNCH Software 257

 

 9.A.1.4 The VB2000 Software 258

 

 9.A.2 Implementations of Valence Bond Methods in

 

 Standard Ab Initio Packages 258

 

10 Do Your Own Valence Bond Calculations—A

 

 Practical Guide 271

 

10.1 Introduction 271

 

10.2 Wave Functions and Energies for the Ground State

 

 of F2 271

 

10.2.1 GVB, SC, and VBSCF Methods 272

 

10.2.2 The BOVB Method 276

 

10.2.3 The VBCI Method 280

 

10.3 Valence Bond Calculations of Diabatic States and

 

 Resonance Energies 281

 

10.3.1 Definition of Diabatic States 282

 

10.3.2 Calculations of Meaningful Diabatic States 282

 

10.3.3 Resonance Energies 284

 

10.4 Comments on Calculations of VBSCDs and VBCMDs 287

 

Appendix 290

 

10.A.1 Calculating at the SD–BOVB Level in Low

 

 Symmetry Cases 290

 

11 The Chemical Bonds in Valence Bond Theory 304

 

11.1 Introduction 304

 

11.2 VB Approaches: Their Bond Descriptions and Representations 304

 

11.2.1 Single Two-Electron Bonds 304

 

11.2.2 Multiple Two-Electron Bonds 306

 

11.2.3 Classical VB Methods for Single Bonds 306

 

11.2.4 VB Methods for Multiple Bonds 307

 

11.3 Applications of VB Theory to Chemical Bonding 309

 

11.3.1 Electron-Pair Bonds 309

 

 11.3.1.1 The Logic Behind the Existence of

 

 Three Bond Families 314

 

 11.3.1.2 Do Other Computational Methods

 

 Reveal the CSB Family? 315

 

11.3.2 Pauli Repulsion: The Major Driver of CSB 317

 

 11.3.2.1 Bonds Between Main Elements 318

 

 11.3.2.2 Bonds Between Transition Metals

 

 (TMs) 320

 

 11.3.2.3 Post Transition Metals, Groups 11

 

 and 12 321

 

 11.3.2.4 Other CSB Factors 321

 

 

 

11.3.3 Experimental Manifestations of CSB 322

 

11.3.4 Deducing Bonding Features from Energy

 

 Barriers 323

 

11.3.5 Unique Features of Charge-Shift Bonds 324

 

11.4 Why and When will Atoms Form Hypervalent

 

 Molecules? 325

 

11.5 Features of Orbital Hybridization in Modern VB

 

 Theory 328

 

11.5.1 Overlaps of Optimized Hybrid Orbitals 329

 

11.5.2 Typical Molecules and Their Variationally

 

 Optimized Hybrid Orbitals 330

 

 11.5.2.1 Tetrahedral Hybrids in CH4, B and

 

 N 330

 

 11.5.2.2 Tetrahedral Hybrids 332

 

 11.5.2.3 Linear Hybrids 333

 

11.5.3 An Overview of Hybridization Results 333

 

 11.5.3.1 Summary of Hybridization Trends in

 

 Classical VB Theory 334

 

 11.6 Description of Multipole Bonding 334

 

 11.6.1 The Bond Multiplicity of C2 335

 

 11.6.2 Multi-Structure VBSCF Calculations of C2 335

 

 11.6.2.1 The Covalent VB-Structure Set 336

 

 11.6.2.2 Adding the Ionic Structures 337

 

11.6.3 Properties of Quadruply-Bonded Species 342

 

 11.6.3.1 The Resonance-Energy Effect of

 

 Doubly-Bonded Structures on

 

 Quadruple Bonds 343

 

 11.6.3.2 The Nature of the s-Bonds in C2 343

 

 11.6.3.3 The Exo s-Bonds in C2 344

 

11.6.4 Some Lessons from the C2 Study 344

 

11.6.5 The Kinetic Stability of Dioxygen

 

 Originates in the Cooperative p-Three-

 

 Electron Bonding 345

 

11.6.6 Outcomes of p-s Interplay in Multiple

 

 Bonding 347

 

 11.6.6.1 The p-s Interplay in Benzene: What

 

 Factor Determines the D6h Structure? 348

 

 11.6.6.2 The p-s Interplay in Triply-Bonded

 

 Molecules 352

 

 11.6.6.2.1 Conclusions and Extensions of

 

 the p-s Interplay 353

 

 

 

 11.7 Triplet-Pair Bonds (TPB) in Ferromagnetic

 

 Metal-Clusters 354

 

11.7.1 VB Modelling of Bonding in Triplet-Pair

 

 Bonds 357

 

11.7.2 VB Modelling of n+1Mn Clusters 360

 

11.7.3 Bond Energies of Triplet-Pair Bonds 364

 

11.7.4 A Summary of No-Pair Bonding 365

 

 11.8 Concluding Remarks 368

 

 11.9 Supporting Information 368

 

 11.9.1 Supplementary Issues 368

 

 11.9.2 VB Structures for C2 370

 

 11.9.3 Pauli Repulsion and VB Structure Counts

 

 For Triplet-Pair Bond (TPB) in No-Pair

 

 Clusters 377

 

 11.9.3.1 Coinage Metal Clusters 377

 

 11.9.3.2 Alkali Metal Clusters 379

 

12 Breathing-Orbital Valence Bond: Methods and

 

 Applications 391

 

12.1 Introduction 391

 

12.2 Methodology 391

 

 12.2.1 From VBSCF to BOVB 392

 

 12.2.2 Static and Dynamic Correlations in

 

 Electron-Pair Bonds 393

 

 12.2.3 Odd-Electron Bonds 395

 

 12.2.4 Spin-Unrestricted VBSCF and BOVB

 

 Methods 398

 

12.3 Some Applications of the BOVB Method 398

 

 12.3.1 A Quantitative Definition of Diradical

 

 Character 398

 

 12.3.2 When the Diradical Character Rules the

 

 Reaction Barriers 400

 

 12.3.3 Fast, Accurate and Insightful Calculations

 

 of Challenging Excited States 403

 

 12.3.3.1 The V State of Ethylene 403

 

 12.3.3.2 The Low-Lying Excited States of Ozone

 

 and Sulfur Dioxide 406

 

12.4 Concluding Remarks 410

 

 12.4.1 The Specific Insight Provided by VB

 

 Ab Initio Computations 410

 

 12.4.2 Non-Orthogonality: A Handicap or an

 

 Opportunity? 411

 

Epilogue 416

 

Glossary 418

 

Index 423

Erscheint lt. Verlag 16.3.2026
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
ISBN-13 9781394238798 / 9781394238798
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Quantenmechanik | Spektroskopie | Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 83,90