Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Polymer Science, Engineering, and Sustainability, 2 Volume Set -

Polymer Science, Engineering, and Sustainability, 2 Volume Set

Buch | Hardcover
1408 Seiten
2025
John Wiley & Sons Inc (Verlag)
978-1-119-82009-3 (ISBN)
CHF 739,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
An expert discussion of the basic science and production chain in the polymer industry

In this 2-volume set of Polymer Science, Engineering, and Sustainability: From Fundamentals to Applications in Synthesis, Characterization, and Processing, a team of distinguished researchers delivers a comprehensive discussion of polymer chemistry and industrial production.

The first volume covers polymer chemistry and engineering, as well as industrial polymer production. The second volume stresses physico-chemical, mechanical and advanced characterization techniques, polymer processing principles and transformation processes, advanced applications, and sustainability and recycling principles and processes.

Each volume features useful case studies, as well as sections focused on sustainability that covers renewable and biobased polymers and polymer recycling. They also emphasize sustainable practices guided by twelve principles of green chemistry.

Readers will also find:



A thorough introduction to polymer chemistry and industrial polymer production
Comprehensive explorations of physico-chemical characterization techniques
Practical discussions of mechanical and advanced characterization techniques and polymer processing principles and transformation processes
Complete treatments of sustainability and recycling principles and processes

Perfect for polymer scientists and engineers in industry, Polymer Science, Engineering, and Sustainability, 2 Volume Set will also benefit chemical engineers, materials scientists, and postgraduate students in polymer engineering or production programs.

Enrique Saldivar-Guerra, PhD, is Senior Researcher at the Center for Research in Applied Chemistry in Mexico. Eduardo Vivaldo-Lima, PhD, is Full Professor at the Universidad Nacional Autonoma de Mexico, external academic member of the Institute for Polymer Research at the University of Waterloo, and Associate Editor of The Canadian Journal of Chemical Engineering.

About the Editors xxiii

List of Contributors xxv

Preface xxix

Acknowledgments xxxi

Volume 1

1 Introduction to Polymers and Polymer Types 1

Enrique Saldívar-Guerra and Eduardo Vivaldo-Lima

1.1 Introduction to Polymers 1

1.1.1 Basic Concepts 1

1.1.2 History 2

1.1.3 Mechanical and Rheological Properties 2

1.1.3.1 Mechanical Properties 2

1.1.3.2 Rheological Properties 3

1.1.4 Polymer States 4

1.1.5 Molecular Weight 4

1.1.5.1 Moments of the Molar Mass Distribution 6

1.1.6 Main Types and Uses 8

1.2 Classification of Polymers 9

1.2.1 Classification Based on Structure 9

1.2.2 Classification Based on Mechanism 10

1.2.2.1 Step-Growth Polymerization (SGP) 10

1.2.2.2 Chain or Chain-growth Polymerization (CP) 10

1.2.3 Classification by Chain Topology 11

1.2.4 Other Classification Criteria 14

1.2.4.1 Homo and Copolymers 14

1.2.4.2 Origin 14

1.2.4.3 Biodegradability and Sustainability 14

1.2.4.4 Production Volume 15

1.3 Nomenclature 15

1.3.1 Conventional Nomenclature 15

1.3.2 IUPAC Structure-based Nomenclature 16

1.3.3 Trade, Common Names, and Abbreviations 16

1.4 Further Reading 16

Acknowledgments 17

References 17

2 Polycondensation 19

Luis Ernesto Elizalde, Gladys de losSantos, Rita del Rosario Sulub-Sulub, and Manuel Aguilar-Vega

2.1 Introduction 19

2.1.1 General Principles 19

2.1.2 Number-Average Degree of Polymerization 21

2.1.3 Molecular Weight Distribution 23

2.1.4 Polymers Obtained by Polycondensation Polymerization 24

2.2 Polycondensation Kinetics 27

2.3 Polyamides 28

2.3.1 Polyamidation 28

2.3.2 Aromatic Polyamides 30

2.4 Polyimides 30

2.5 Polyesters 32

2.5.1 Polyesters from Diols 32

2.5.2 Polyethers 34

2.5.3 Polyurethanes 35

2.5.4 Polyureas 35

2.5.5 Polycarbonates 36

2.5.6 Polysulfones 37

2.5.7 Polybenzimidazole 37

2.5.8 Depolymerization and Recycling 39

2.6 Inorganic Condensation Polymers 41

2.6.1 Polysiloxanes 41

2.6.2 Polysilanes 42

2.6.3 Polyphosphazenes 43

2.7 Dendrimers 44

2.8 Thermoset Polycondensation Polymers 45

2.8.1 Polyester Resins 45

2.8.2 Epoxy Resins 45

2.8.3 Alkyd Resins 47

2.8.4 Phenolic Resins 47

2.8.5 Urea-Formaldehyde Resins 47

2.9 Bio-based Step-Growth Polymers 48

2.10 Bio-based Polycondensation Polymers 50

2.10.1 Dicarboxylic Acids and Diols 52

2.10.2 Hydroxy Acids and Hydroxyl Esters 52

2.10.3 Amino Acids and Lactams 52

2.10.4 Diamines 52

2.11 Controlled Molecular Weight Condensation Polymers 53

2.11.1 Solid Phase Synthesis 54

2.11.2 Use of Macromonomers in Condensation Reactions 54

References 57

3 Free-Radical Polymerization 65

Ramiro Guerrero-Santos, Enrique Saldívar-Guerra, Iván Zapata-González, José Bonilla-Cruz, and Eduardo Vivaldo-Lima

3.1 Introduction 65

3.2 Basic Mechanism 66

3.2.1 Chemical Initiation 67

3.2.2 Propagation 68

3.2.3 Termination 69

3.3 Other Free Radical Reactions 70

3.3.1 Chain Transfer to Small Species 70

3.3.2 Chain Transfer to Monomer 71

3.3.3 Chain Transfer to Initiator 71

3.3.4 Chain Transfer to Solvent and Chain Transfer Agents 71

3.3.5 Chain Transfer to Impurities 72

3.3.6 Chain Transfer to Polymer 72

3.3.7 Backbiting 74

3.3.8 Reactions to Internal and Terminal Double Bonds and Crosslinking 75

3.3.9 Inhibition 76

3.4 Kinetics and Polymerization Rate 77

3.4.1 Diffusion-Controlled (DC) Effects 79

3.5 Molecular Weight and Molecular Weight Distribution 83

3.5.1 Full Molecular Weight Distribution 84

3.6 Experimental Determination of Rate Constants 86

3.7 Thermodynamics of Polymerization 86

Acknowledgment 89

References 89

4 Reversible-Deactivation Radical Polymerization (RDRP) 97

Graeme Moad, Eduardo Vivaldo-Lima, Michael F. Cunningham, Robin A. Hutchinson, Connor Sanders, Enrique Saldívar-Guerra, and Alexander Penlidis

4.1 Introduction to RDRP 97

4.1.1 Terminology for RDRP 97

4.1.1.1 RDRP with Unimolecular Activation – Stable radical-mediated Polymerization 97

4.1.1.2 RDRP with Bimolecular Activation – Atom-Transfer Radical Polymerization 98

4.1.1.3 RDRP with Activation by Degenerative Chain Transfer – Degenerative Chain-Transfer Radical Polymerization 100

4.1.1.4 Multiple Mechanism RDRP 100

4.2 Nitroxide-Mediated Polymerization (NMP) 102

4.2.1 Historical Background 102

4.2.2 Polymer Chemistry of NMP 102

4.2.2.1 Mechanistic Aspects and Chemical Routes 102

4.2.2.2 Nitroxides Most Commonly Used 103

4.2.2.3 Structure Control and Macromolecular Architectures 106

4.2.3 A Polymer Reaction Engineering (PRE) View of NMP 107

4.2.3.1 Kinetics and Mathematical Modeling 107

4.2.3.2 Dispersed-Phase Polymerizations 109

4.2.3.3 NMP in scCO2 109

4.2.3.4 Continuous NMP 109

4.2.4 Applications and Perspectives 109

4.2.5 Closing Remarks 110

4.3 Atom-Transfer Radical Polymerization (ATRP) 111

4.3.1 Normal ATRP 111

4.3.2 ATRP Variants 113

4.3.3 Future Outlook 115

4.4 Reversible-Addition-Fragmentation Chain-Transfer Polymerization (RAFT) 115

4.4.1 RAFT Mechanism 116

4.4.2 Monomers in RAFT Polymerization 117

4.4.3 Initiation and Termination in RAFT Polymerization 117

4.4.4 RAFT Agents 118

4.4.4.1 Z Group Selection 120

4.4.4.2 R Group Selection 121

4.4.4.3 Other Considerations in RAFT Agent Selection 122

4.4.5 Sequence-defined Oligomers 122

4.4.6 (Multi)Block Copolymer Synthesis 122

4.4.7 Star Synthesis 124

4.5 Other RDRP Systems 125

4.5.1 Degenerative Transfer Controlled Radical Polymerization Mediated by Organotellurium (TERP) 125

4.5.2 Degenerative Transfer RDRP Mediated by Organostibine (SBRP) and Organobismuthine (BIRP) 126

4.5.3 Iodine Transfer Polymerization (ITP) and Variants 127

4.5.4 Reversible Chain-Transfer Catalyzed Polymerization (RTCP) 127

4.5.5 Organometallic Mediated Radical Polymerization 128

4.6 RDRP in Aqueous Dispersions 129

4.6.1 Introduction 129

4.6.2 Nitroxide-mediated Polymerization (NMP) 130

4.6.2.1 Emulsion Polymerization 130

4.6.2.2 Miniemulsion Polymerization 130

4.6.2.3 Microemulsion Polymerization 130

4.6.3 Atom-Transfer Radical Polymerization (ATRP) 130

4.6.3.1 Emulsion Polymerization 130

4.6.3.2 Miniemulsion Polymerization 131

4.6.3.3 Microemulsion Polymerization 132

4.6.4 Reversible-Addition-Fragmentation Chain-Transfer (RAFT) Polymerization 132

4.6.4.1 Emulsion Polymerization 132

4.6.4.2 Miniemulsion Polymerization 133

4.6.4.3 Microemulsion Polymerization 133

4.6.5 Tellurium-Mediated Radical Polymerization (TERP) 133

4.6.6 Iodine Transfer Polymerization 134

4.6.7 Concluding Remarks 134

Acknowledgments 134

References 135

5 Coordination Polymerization 161

João Soares, Odilia Pérez, and Arash Alizadeh

5.1 Introduction 161

5.2 Polyolefin Types 162

5.3 Catalysts Types 162

5.3.1 Phillips Catalyst 162

5.3.2 Classical Ziegler–Natta Catalysts 163

5.3.2.1 Conjugated and Nonconjugated Dienes Polymerizations 164

5.3.3 Single-Site Catalysts 164

5.3.3.1 Metallocenes and Constrained Geometry Catalysts 164

5.3.3.2 Nonmetallocene Early Transition Metal-Based SSCs 167

5.3.3.3 Late Transition Metal Catalysts 168

5.3.3.4 Supported Single-Site Catalysts 168

5.4 Coordination Polymerization Mechanism 169

5.5 Polymerization Kinetics and Mathematical Modeling 170

5.5.1 Polymer Microstructural Models 170

5.6 Modeling Particle-Scale Phenomena 176

5.7 Polymerization Reactor Models 181

References 183

6 Copolymerization 191

Marc A. Dubé, Enrique Saldívar-Guerra, Iván Zapata-González, and Eduardo Vivaldo-Lima

6.1 Introduction 191

6.1.1 What Are Copolymers? 191

6.1.2 Commercial Copolymer Examples 192

6.1.2.1 Step-Growth Copolymerization 192

6.2 Types of Copolymers 192

6.2.1 Statistical Copolymers 192

6.2.2 Alternating Copolymers 193

6.2.3 Block Copolymers 193

6.2.4 Gradient Copolymers 194

6.2.5 Graft Copolymers 194

6.2.6 Notes on Nomenclature 194

6.3 Copolymer Composition and Microstructure 194

6.3.1 Terminal Model Kinetics 194

6.3.1.1 Copolymer Composition Behavior 197

6.3.2 Other Copolymerization Models 199

6.3.2.1 Penultimate Model 200

6.3.2.2 Depropagation Models 201

6.3.2.3 Models Involving the Participation of Complexes 202

6.3.2.4 Model Discrimination 202

6.3.3 Reactivity Ratio Estimation 203

6.3.4 Sequence Length Distribution 204

6.3.5 Composition Measurement Methods 205

6.3.6 Extensions to Multicomponent Copolymerization 206

6.4 Reaction Condition Considerations 208

6.4.1 Copolymerization Rate 208

6.4.2 Effect of Temperature 210

6.4.3 Reaction Medium 211

6.4.4 Monomer Concentration Effects 212

6.4.5 Effect of Pressure 213

6.4.6 Achieving Uniform Copolymer Composition 213

6.4.6.1 Policy I 213

6.4.6.2 Policy II 214

6.5 Reversible-Deactivation Radical Copolymerization (RDRcoP) 215

6.5.1 Reactivity Ratios for Linear Structures 215

6.5.2 Conventional Copolymerizations and RDRcoP Leading to Nonlinear Structures (Effect of Branching and Cross linking) 216

6.6 Copolymerization Systems Including Bio-Based Monomers 218

Acknowledgment 218

References 219

7 Anionic Polymerization 233

Roderic Quirk and Hongwei Ma

7.1 Introduction 233

7.2 Living Anionic Polymerization 234

7.2.1 Molecular Weight Control 234

7.2.2 Molecular Weight Distribution 235

7.3 General Considerations 236

7.3.1 Monomers 236

7.3.2 Solvents 238

7.3.3 Initiators 238

7.3.4 Initiation by Electron Transfer Alkali Metals 238

7.3.4.1 Radical Anions 239

7.3.5 Initiation by Nucleophilic Addition 240

7.3.5.1 Alkyllithium Compounds 240

7.3.5.2 Organoalkali Initiators 242

7.3.5.3 Organoalkaline Earth Initiators 242

7.3.5.4 Ate Complexes 243

7.3.5.5 Difunctional Initiators 243

7.3.5.6 Functionalized Initiators 244

7.3.5.7 1,1-Diphenylmethyl Carbanions 244

7.4 Kinetics and Mechanism of Polymerization 245

7.4.1 Styrene and Diene Monomers 245

7.4.1.1 Initiation in Hydrocarbon Solvents? 245

7.4.1.2 Propagation 246

7.4.1.3 Polar Solvents 247

7.4.1.4 Termination Reactions 248

7.4.1.5 Chain Transfer Reactions 251

7.4.2 Polar Monomers 251

7.4.2.1 Polar Vinyl Monomers 251

7.4.2.2 Methyl Methacrylate 252

7.4.2.3 Heterocyclic Monomers 253

7.4.2.4 Ethylene Oxide 253

7.4.2.5 Propylene Oxide 254

7.4.2.6 Propylene Sulfide 254

7.4.2.7 Lactones 255

7.4.2.8 Cyclic Carbonates 256

7.4.2.9 Siloxanes 257

7.5 Stereochemistry 258

7.5.1 Polydienes 258

7.5.1.1 Hydrocarbon Solvents 258

7.5.1.2 Polar Solvents and Polar Additives 260

7.5.2 Methacrylate Stereochemistry 262

7.5.3 Styrene 263

7.5.4 Vinylpyridines 263

7.6 Copolymerization of Styrenes and Dienes 263

7.6.1 Tapered Block Copolymers 265

7.6.2 Random Styrene-Diene Copolymers (Styrene-Butadiene Rubber) 266

7.7 Synthetic Applications of Living Anionic Polymerization 267

7.7.1 Block Copolymers 267

7.7.1.1 Block Copolymer Synthesis by Three-Step Sequential Monomer Addition 268

7.7.1.2 Block Copolymer Synthesis by Two-Step Sequential Monomer Addition and Coupling 269

7.7.1.3 Block Copolymers by Difunctional Initiation and Two-Step Sequential Monomer Addition 270

7.7.2 Star-Branched Polymers 271

7.7.2.1 Linking Reactions with Silyl Halides 271

7.7.2.2 Divinylbenzene Linking Reactions 272

7.7.2.3 New Linking Chemistry 273

7.7.3 Synthesis of Chain-End Functionalized Polymers 274

7.7.3.1 Chain-End Functionalization by Termination with Electrophilic Reagents 274

7.7.3.2 Functionalizations Via Silyl Hydride Functionalization and Hydrosilation 275

7.7.4 Industrial Applications of Alkyllithium-Initiated Anionic Polymerization 276

References 277

8 Cationic Polymerizations 291

Filip E. Du Prez, Eric J. Goethals, Ricardo Acosta Ortiz, and Richard Hoogenboom

8.1 Introduction 291

8.2 Carbocationic Polymerization 292

8.2.1 Isobutene 293

8.2.2 Vinyl Ethers 297

8.2.3 Styrene Monomers 301

8.3 Cationic Ring-Opening Polymerization 302

8.3.1 Cyclic Ethers 303

8.3.1.1 Poly(ethylene oxide) 303

8.3.1.2 Poly(oxetane) 303

8.3.1.3 Poly(tetrahydrofuran) 304

8.3.2 Cyclic Amines 308

8.3.2.1 Aziridines 308

8.3.2.2 Azetidines 310

8.3.3 Cyclic Imino Ethers 310

8.3.4 Photoinitiated Cationic Polymerization 314

8.3.4.1 Diaryliodonium Salts 315

8.3.4.2 Triarylsulfonium Salts 317

8.3.4.3 Photosensitizers 319

8.4 Summary and Prospects 319

Acknowledgment 320

References 320

9 Crosslinking 333

Julio César Hernández-Ortiz, Porfirio López-Domínguez, Patricia Pérez-Salinas, and Eduardo Vivaldo-Lima

9.1 Introduction 333

9.2 Background on Polymer Networks 334

9.2.1 Types of Polymer Networks Based on Structure 334

9.2.1.1 Definition and Structure of Polymer Networks 334

9.2.1.2 Ideal or Perfect Networks 335

9.2.1.3 Imperfect Polymer Network 335

9.2.1.4 Model Polymer Network 335

9.2.1.5 Interpenetrating and Semi-interpenetrating Polymer Networks 336

9.2.2 Chemical and Physical Networks 336

9.2.2.1 Physical Networks 336

9.2.2.2 Chemical or Covalent Networks 336

9.2.3 Intermolecular and Intramolecular Crosslinking 337

9.2.4 Monomer Functionality ( f ) 338

9.2.5 Crosslink Density 338

9.2.6 Gelation and Swelling Index 338

9.2.6.1 Swelling Index 339

9.3 Main Chemical Routes for Synthesis of Polymer Networks 339

9.3.1 Step-Growth Polymerization 339

9.3.2 Vulcanization 340

9.3.3 End-linking 340

9.3.4 Free-Radical Copolymerization (FRC) 340

9.3.4.1 FRC Using Divinyl Monomers 340

9.3.4.2 Crosslinking During Post-polymerization Processing 341

9.4 Characterization of Polymer Networks and Gels 342

9.4.1 Determination of the Gelation Point 343

9.4.2 Measurement of Crosslink Density 344

9.5 Theory and Mathematical Modeling of Crosslinking 345

9.5.1 Statistical Gelation Theories 346

9.5.2 Percolation Gelation Theories 348

9.5.3 Kinetic Theories 350

9.5.4 Full CLD in FRC 351

9.5.4.1 Full CLDs for FRC Using kMC 353

9.5.5 Crosslinking and Reversible-Deactivation Radical Polymerization 354

Acknowledgments 356

References 356

10 Polymer Modification and Grafting 369

Mariamne Dehonor-Gómez, Enrique Saldívar-Guerra, Alfonso González-Montiel, José Bonilla-Cruz, and Eduardo Vivaldo-Lima

10.1 General Concepts 369

10.1.1 Methods for the Synthesis of Functional Polymers 369

10.1.2 Grafting onto, Grafting Through, and Grafting from 370

10.1.3 Grafting on Polymeric and Inorganic Surfaces 370

10.1.4 Polymer Coupling Reactions 372

10.2 Graft Copolymers 373

10.2.1 Commercial Polymer Grafting 373

10.2.1.1 High-Impact Polystyrene 373

10.2.1.2 Technical Aspects 373

10.2.1.3 Acrylonitrile-Butadiene-Styrene Polymers (ABS) 375

10.2.1.4 Other Impact-Modified Commercial Grafting-Based Polymers 375

10.2.1.5 Graft-Polyols 376

10.2.2 Polyolefins 376

10.2.2.1 Borane Compounds 376

10.2.2.2 Ziegler–Natta and Metallocenes 376

10.2.2.3 Cationic and Anionic Graft Copolymerization 376

10.2.3 Modern Grafting Techniques onto Polymers 377

10.2.3.1 NMP, RAFT, and ATRP 377

10.2.3.2 Grafting of Synthetic Polymers onto Biopolymers 381

10.2.4 Functionalization and Grafting from Surfaces 382

10.2.4.1 Grafting from Nanoparticles 382

10.2.4.2 Carbon Derivatives 385

10.2.5 Modeling of Polymer Grafting 389

10.2.6 Concluding Remarks 391

Acknowledgments 391

References 392

11 Polymer Additives 409

Rudolf Pfaendner

11.1 Introduction 409

11.2 Antioxidants 411

11.2.1 Primary Antioxidants 412

11.2.2 Secondary Antioxidants 414

11.2.3 Other Antioxidative Stabilizers 414

11.2.4 Testing of Antioxidants 415

11.2.5 Selected Examples 415

11.2.6 Trends in Antioxidants 417

11.3 PVC Heat Stabilizers 417

11.3.1 Mixed Metal Salts 417

11.3.2 Organo Tin Heat Stabilizers 417

11.3.3 Metal-Free Heat Stabilizers 418

11.3.4 Costabilizers 418

11.3.5 Testing of PVC Heat Stabilizers 418

11.3.6 Selected Examples of PVC Heat Stabilization 419

11.3.7 Trends in PVC Stabilization 420

11.4 Light Stabilizers 420

11.4.1 UV Absorbers 421

11.4.2 Hindered Amine Light Stabilizers 421

11.4.3 Testing of Light Stabilizers 422

11.4.4 Selected Examples of Light Stabilization 423

11.4.5 Trends in UV/Light Stabilizers 423

11.5 Flame Retardants 424

11.5.1 Halogenated Flame Retardants 425

11.5.2 Inorganic Flame Retardants 425

11.5.3 Phosphorus and Nitrogen-Containing Flame Retardants 425

11.5.4 Testing of Flame Retardancy 426

11.5.5 Selected Examples of Flame Retardancy 427

11.5.6 Trends in Flame Retardants 427

11.6 Plasticizers 428

11.6.1 Chemical Structures 428

11.6.2 Testing of Plasticizers 429

11.6.3 Trends in Plasticizers 429

11.7 Impact Modifiers 429

11.7.1 Chemical Structures of Impact Modifiers 430

11.7.2 Testing 430

11.7.3 Trends 430

11.8 Scavenging Agents 430

11.8.1 Acid Scavengers 430

11.8.2 Aldehyde Scavengers 431

11.8.3 Odor Reduction 431

11.9 Additives to Enhance Processing 431

11.10 Additives to Modify Plastic Surface Properties 432

11.10.1 Slip and Antiblocking Agents 432

11.10.2 Antifogging Agents 432

11.10.3 Antistatic Agents 432

11.11 Additives to Modify Polymer Chain Structures 433

11.11.1 Chain Extenders 433

11.11.2 Controlled Degradation 434

11.11.3 Prodegradants 434

11.11.4 Crosslinking Agents 434

11.12 Additives to Influence Morphology and Crystallinity of Polymers 435

11.12.1 Nucleating Agents/Clarifiers 435

11.12.2 Coupling Agents/Compatibilizers 436

11.13 Antimicrobials 436

11.14 Additives to Enhance Thermal Conductivity 436

11.15 Additives for Recycled Plastics 437

11.16 Active Protection Additives (Smart Additives) 437

11.16.1 Content Protection 437

11.16.2 Productivity Enhancer 438

11.16.3 Heat Control 438

11.17 Odor Masking 439

11.18 Animal Repellents 439

11.19 Markers 439

11.20 Blowing Agents 439

11.21 Summary and Trends in Polymer Additives 440

11.22 Selected Literature 440

References 441

12 Polymer Reaction Engineering 445

Alexander Penlidis, Eduardo Vivaldo-Lima, Julio C. Hernández-Ortiz, Enrique Saldívar-Guerra, Porfirio López-Domínguez, and Carlos Guerrero-Sánchez

12.1 Introduction 445

12.2 Mathematical Modeling of Polymerization Processes 446

12.2.1 Chemical Reactor Modeling Background 446

12.2.2 The Method of Moments 448

12.2.3 Bivariate Distributions 450

12.2.4 Pseudo-homopolymer Approach or Pseudo-kinetic Rate Constants Method 452

12.3 Useful Tips on Polymer Reaction Engineering and Modeling 455

12.3.1 Tip 1: (Initiators, Initiator Data, and Initiator Decomposition) 455

12.3.2 Tip 2: (Chain Stereoregularity and Active Sites) 455

12.3.3 Tip 3: (Radical Lifetime) 455

12.3.4 Tip 4: (Chain Microstructure and Propagation Reactions) 455

12.3.5 Tip 5: (Transfer Reactions, Branching, Effects on Molecular Weight Averages, and Effects on Polymerization Rate) 456

12.3.6 Tip 6 (Related to Tip 5): (Impurities, Transfer to Monomer, and Terminal Double Bonds) 456

12.3.7 Tip 7: (Glass Transition Temperature, Limiting Conversion, Methyl Methacrylate Polymerization, and Depropagation) 456

12.3.8 Tip 8: (Terminal Double Bond Polymerization) 457

12.3.9 Tip 9: (Radical Stationary State Hypothesis) 457

12.3.10 Tip 10: (Troubleshooting with Molecular Weight Data and Detection of Branching) 458

12.3.11 Tip 11: (Long Chain Approximation, Density/Volume of Polymerizing Mixture, and Ideal vs. Diffusionally Limited Kinetics) 458

12.3.12 Tip 12: (Copolymerization, Reactivity Ratios, and Estimation of Reactivity Ratios) 458

12.3.13 Tip 13 (Related to Tip 12): (Copolymerization, Copolymer Composition, Composition Drift, Azeotropy, Semibatch Reactor, and Copolymer Composition Control) 459

12.3.14 Tip 14: (Instantaneous vs. Cumulative Properties and Troubleshooting with Molecular Weight Data) 460

12.3.15 Tip 15: (Expressions for Rate of Polymerization) 460

12.3.16 Tip 16: (Polymerization of Methyl Methacrylate, Styrene, and Vinyl Acetate) 461

12.3.17 Tip 17: (Termination in Homopolymerization and Copolymerization, and Initiation Rate in Homopolymerization and Copolymerization) 461

12.3.18 Tip 18: (Internal Double Bond Polymerization) 462

12.3.19 Tip 19: (Intramolecular Chain Transfer, Backbiting, and Short Chain Branching) 462

12.3.20 Tip 20: (Polymerization Heat Effects and Energy Balances) 462

12.3.21 Tip 21: (Crosslinking, Gelation, Gel Formation, and Sol vs. Gel) 463

12.3.22 Tip 22: (Design and Selection of Polymeric Materials with Specific Properties) 464

12.3.23 Tip 23: (Additional Techniques for Polymer Reactor/Process Troubleshooting) 464

12.4 Machine Learning in Polymer Research and Development 464

12.5 Examples of Several Free-Radical (Co)polymerization Schemes and the Resulting Kinetic and Molecular Weight Development Equations 466

12.5.1 Modeling Linear and Nonlinear Homo- and Co-polymerizations Assuming Monofunctional Polymer Molecules and Using the PKRCM 466

12.5.2 Modeling Linear and Nonlinear Homo- and Co-polymerizations Assuming Multifunctional Polymer Molecules and Using the PKRCM 469

Acknowledgments 475

References 475

13 Bulk and Solution Processes 481

Marco Aurelio Villalobos Montalvo and Jon Debling

13.1 Definition 481

13.2 History 481

13.3 Processes for Bulk and Solution Polymerization 482

13.3.1 Reactor Types 482

13.3.1.1 Batch/Semi-batch Reactor 482

13.3.1.2 Continuous Stirred Tank Reactor (CSTR) 482

13.3.1.3 Autoclave Reactor 483

13.3.1.4 Tubular Reactor 483

13.3.1.5 Loop Reactor 484

13.3.1.6 Casts and Molds 484

13.3.1.7 Continuous Micro-Reactors 485

13.3.2 Processes for Free-Radical Polymerization 486

13.3.2.1 Polystyrene 486

13.3.2.2 Styrene-Acrylonitrile (SAN) Copolymers 488

13.3.2.3 High-Impact Polystyrene (HIPS) 488

13.3.2.4 Acrylonitrile/Butadiene/Styrene (ABS) 489

13.3.2.5 Acrylics 490

13.3.2.6 Water-Soluble Polymers 492

13.3.2.7 Branched and Hyperbranched Polymers 492

13.3.2.8 In Situ Polymerization 492

13.3.3 Processes for Step-Growth Polymerization 493

13.3.3.1 Polyesters 494

13.3.3.2 Polyamides 497

13.3.3.3 Polycarbonates 498

13.3.3.4 Epoxy Resins 499

13.3.3.5 Polysulfones 500

13.3.3.6 Dendrimers and Hyperbranched Polymers 501

13.3.3.7 Biopolymers 501

13.3.4 Processes for Ionic/Anionic Polymerization 502

13.3.4.1 Anionic Polystyrene (PS), Styrene-Butadiene (SB), and Styrene–Isoprene (SI) Copolymers 502

13.3.5 Processes for Homogenous Catalyzed Polymerization 504

13.3.5.1 Polyethylene 504

13.4 Energy Considerations 505

13.4.1 Heat of Polymerization 505

13.4.2 Adiabatic Temperature Rise 506

13.4.3 Self-Accelerating Temperature 506

13.4.4 Reactor Energy Balance 507

13.4.4.1 Continuous Stirred Tank Reactor 507

13.4.4.2 Cascade of CSTR’s 508

13.4.4.3 Tubular Reactors 508

13.5 Mass Considerations 508

13.5.1 Reactor Size 508

13.5.2 Process Residence Time, Conversion, Transients, and Steady State 509

13.5.3 Reactor Pressure 510

13.5.4 Viscosity 510

13.5.5 Mixing 511

13.5.6 Polymer Purification 511

13.6 Sustainability 512

13.6.1 Monomers from Recycled Content 512

13.6.2 Biobased Monomers and Solvents 513

13.6.3 Life Cycle Assessment LCA of Polymerization Processes 514

References 514

14 Dispersed-phase Polymerization Processes 521

Jorge Herrera-Ordóñez, Enrique Saldívar-Guerra, Eduardo Vivaldo-Lima, and Francisco López-Serrano

14.1 Introduction 521

14.2 Emulsion Polymerization 522

14.2.1 Physicochemical Aspects 522

14.2.1.1 Monomer Partitioning and Swelling in Polymer Colloids 522

14.2.2 Formulation Components in Emulsion Polymerization 523

14.2.2.1 Monomers 523

14.2.2.2 Water 523

14.2.2.3 Water-soluble Initiator 524

14.2.2.4 Surfactants 524

14.2.2.5 Chain Transfer Agents 525

14.2.2.6 Other Components 525

14.2.3 Overall Description of Emulsion Polymerization 525

14.2.3.1 Nucleation Mechanisms 525

14.2.3.2 Intervals of an Emulsion Polymerization 529

14.2.3.3 Rate of Polymerization (Rp) 530

14.2.3.4 Molar Mass 533

14.2.4 Batch, Semibatch, and Continuous Processes 533

14.2.5 Control of Number and Size Distribution of Particles 534

14.2.6 Particle Morphology 535

14.2.7 Latex Characterization 535

14.2.7.1 Monomer Conversion 535

14.2.7.2 Particle Size and PSD 535

14.2.7.3 Particle Morphology 536

14.3 Microemulsion Polymerization 536

14.4 Miniemulsion Polymerization 536

14.5 Applications of Polymer Latexes 537

14.6 Dispersion and Precipitation Polymerizations 538

14.7 Suspension Polymerization 539

14.7.1 Generalities 539

14.7.2 Some Issues About the Modeling of PSD in Suspension Polymerization 540

14.8 Pickering Emulsions 542

Acknowledgments 545

References 545

15 New Polymerization Processes 565

Eduardo Vivaldo-Lima, Carlos Guerrero-Sánchez, Iraís A. Quintero-Ortega, Gabriel Luna-Bárcenas,  Miguel Rosales-Guzmán, and Christian H. Hornung

15.1 Introduction 565

15.2 Polymerizations in Benign or Green Solvents 566

15.2.1 Polymerizations in Compressed and Supercritical Fluids (SCFs) 566

15.2.1.1 Phase Behavior of Polymer Systems in High-Pressure Fluids 566

15.2.1.2 Earlier High-Pressure Polymerization Processes 569

15.2.1.3 Polymerization in Supercritical Carbon Dioxide (scCO2) 569

15.2.1.4 Polymerization in Other Compressed Green Solvents 570

15.2.2 Polymerizations in Ionic Liquids 571

15.3 Alternative Energy Sources for Polymerization Processes 573

15.3.1 Microwave-Activated Polymerization 573

15.3.2 Polymerization Under Irradiation of Other Wavelengths 574

15.4 Polymerization in Microreactors 575

15.5 Photochemistry in Reversible-Deactivation Radical Polymerizations 577

15.6 High-Throughput/-Output Experimentation in Polymer Science 578

15.7 Scale-Up or Commercial Production of New Polymers or New Chemical Routes for Existent Polymers (e.g. Enzymatic Polymerizations; Superacid Catalyzed Polymerizations; Synthesis of Hybrid Materials; Etc.) 579

15.8 Polymerization in Deep Eutectic Solvents 580

15.8.1 Free-Radical Polymerizations 581

15.8.2 RDRP 581

15.8.3 Hydrogels 581

15.8.4 Perspectives 581

Acknowledgments 582

References 582

16 Enzymatic Polymerization and Processing 597

Miquel Gimeno, Miguel Angel Pimentel, and Eduardo Bárzana

16.1 Advantages of Enzymes as Robust Catalysts in Synthesis 597

16.1.1 Superb Activity and Specificity 597

16.1.2 Innocuous to the Environment 598

16.1.3 Obtained from Natural Sources 598

16.1.4 Constantly Improved by Molecular Biology Methods 598

16.2 Enzyme Sources and Their Conditioning 599

16.2.1 Microbial Fermentation and Bioseparation 599

16.2.2 Enzyme Immobilization 599

16.3 The Breakthrough: The Ability of Enzymes to Perform in Nonaqueous Environments 601

16.3.1 First Reports and Critical Issues on Enzyme Catalysis in Nonaqueous Media 601

16.4 Main Enzyme Groups for a Diverse Set of Polymers 603

16.4.1 Oxidoreductases (EC 1) 603

16.4.2 Transferases (EC 2) 604

16.4.3 Hydrolases (EC 3) 604

16.5 The New Frontier. Enzyme Synthesis in Compressed Fluids as Green Solvents 606

16.5.1 1,1,1,2-Tetrafluoroethane 608

16.6 Dealing with Polar Polymers: Novel Media and Processing 609

16.6.1 Ionic Liquids 609

16.6.2 Deep Eutectic Solvents 610

16.7 Current Industrial Processes and Perspectives 611

16.7.1 Poly(lactic Acid), Its Copolymers and Other Polyesters 611

16.8 Enzymatic Modification and Functionalization of Polymers to Reach New Properties 612

16.8.1 Novel Properties 612

16.8.2 Antimicrobial Polymers 613

16.9 Contribution of Enzymes to Circular Bioeconomy: Synthesis and Depolymerization 614

16.10 Conclusions and Perspectives 615

References 615

17 Renewable Monomer and Polymer Synthesis 625

Héctor Ricardo López-González, Teresa Córdova, and Ramón Díaz de León

17.1 Introduction 625

17.2 Biopolymers, Bio-Based Polymers, Biodegradable Polymers, and Biocomposites 626

17.2.1 Biopolymers 626

17.2.2 Bio-Based Polymers 626

17.2.3 Biocomposites 627

17.3 Bio-Based Monomers for Polymer Synthesis 627

17.3.1 Bio-Monomers from Biomass 627

17.3.2 Chemical Platforms for Bio-Based Monomer Synthesis Derived from Lignocellulosic Biomass 628

17.3.2.1 Diols and Polyols as a Chemical Platform 629

17.3.2.2 Furane-Derived Chemical Platform 631

17.3.3 Chemical Platforms for Bio-Based Monomers Derived from Vegetable Oils 633

17.3.4 Chemical Platforms for Bio-Based Monomers and Polymers Derived from Terpenes 634

17.4 Polymers Derived from Bio-Based Monomers 639

17.4.1 Polyesters 639

17.4.1.1 Polylactic Acid (PLA) 639

17.4.1.2 Poly(butylene succinate) (PBS) 640

17.4.1.3 Furane-Based Polyesters 641

17.4.1.4 Polyurethanes 641

References 642

Index 655

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
ISBN-10 1-119-82009-X / 111982009X
ISBN-13 978-1-119-82009-3 / 9781119820093
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Gefüge von Metallen, Keramiken und Verbunden

von Heinrich Oettel; Gaby Ketzer

Buch | Hardcover (2025)
Wiley-VCH (Verlag)
CHF 149,95