Handbook of Reagents for Organic Synthesis (eBook)
The Handbook is a compilation of 99 articles on diverse reagents and catalysts that describe the synthesis of heteroarenes, the building blocks of a wide range of chemicals used in pharma and chemical industries. Articles are selected from the e-EROS database and edited to make sure that it includes only the material relevant to the topic of the book and focus on the synthetic aspects. This makes the articles very focused on the needs of readers wanting information on specific syntheses of specific heteroarenes. In addition, the chemistry of each ?parent heteroarene? is also included to ensure that the reader rapidly finds important information.
The Handbook is a part of the Handbook of Reagents for Organic Chemistry series, aiming at collecting articles on a particular theme that individual researchers in academia or industry can use on a daily basis.
André B. Charette
Université de Montréal, Montréal, Canada
The Handbook is a compilation of 99 articles on diverse reagents and catalysts that describe the synthesis of heteroarenes, the building blocks of a wide range of chemicals used in pharma and chemical industries. Articles are selected from the e-EROS database and edited to make sure that it includes only the material relevant to the topic of the book and focus on the synthetic aspects. This makes the articles very focused on the needs of readers wanting information on specific syntheses of specific heteroarenes. In addition, the chemistry of each 'parent heteroarene' is also included to ensure that the reader rapidly finds important information. The Handbook is a part of the Handbook of Reagents for Organic Chemistry series, aiming at collecting articles on a particular theme that individual researchers in academia or industry can use on a daily basis.
André B. Charette Université de Montréal, Montréal, Canada
Preface ix
Introduction xi
Recent Review Articles and Monographs xiii
Short Note on InChIs and InChIKeys xvii
Acetaldoxime 1
Acetone Hydrazone 7
Acetonitrile 11
Acetonitrile N-Oxide 18
N-Aminophthalimide 19
1-Amino-pyridinium iodide 24
Ammonium Nitrate 27
Ammonium Acetate 29
Ammonium Bicarbonate 30
Benzonitrile N-Oxide 33
Benzoyl Isothiocyanate 36
N-[Bis(methylthio)methylene]-p-toluenesulfonamide 37
Bromoacetone 47
1-tert-Butyloxycarbonyl-1-methylhydrazine 52
2-Chloro-1,3-dimethylimidazolinium chloride 57
Copper(I) Chloride 61
Copper(II) Chloride 75
Copper(I) Iodide 83
Copper(II) Sulfate 93
Copper(II) Trifluoromethanesulfonate 104
Cyclopentadienylbis(triphenylphosphine)cobalt(I) 115
(Diacetoxyiodo)benzene 119
Diaminomaleonitrile 128
Diazo(trimethylsilyl)methyllithium 129
Dibromoformaldehyde Oxime 135
Dichloro Bis(acetonitrile) Palladium 137
Dichlorobis(triphenylphosphine)-palladium(II) 142
Di--chlorodichlorobis[(1,2,3,4,5-)-1,2,-3,4,5-
pentamethyl-2,4-cyclopentadien-1-yl]diiridium 146
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 172
Dichloroformaldehyde Oxime 184
Dichlorotris(triphenylphosphine)ruthenium(II) 186
(Diethoxyphosphoryl)acetonitrile oxide 191
Diethyl Oxalate 192
2,2-Difluoroethylamine 195
Diiminosuccinonitrile 199
1,3-Diisopropyl-1,3-propanedione 200
2,5-Dimethoxytetrahydrofuran 203
N,N-Dimethylacetamide Dimethyl Acetal 208
Dimethyl Diazomalonate 215
Dimethyl 2,3-Pentadienedioate 230
Dimethyl 1,2,4,5-Tetrazine-3,6-dicarboxylate 236
2,4-Dinitrophenylhydrazine 244
Diphenyl Cyanocarbonimidate 247
Dirhodium(II) Tetraacetate 249
Dirhodium Tetrakis(heptafluorobutyramide) 265
Di-p-tolylcarbodiimide 267
Ethyl 2-Diazo-3-oxo-3-phenylpropanoate 273
Ethyl 2-Diazo-3-oxybutyrate 275
Ethyl 2-Diazo-4,4,4-trifluoro-3-oxobutanoate 281
Ethyl Ethoxymethylenecyanoacetate 284
Formamidine Acetate 289
Gold(I) Chloride 291
Gold(III) Chloride 298
Guanidine 322
2,5-Hexanedione 327
Hydrogen Sulfide 330
Hydroxylamine 335
Indium Tribromide 343
Iodine 358
Iron(III) Bromide 374
Iron(III) Chloride 379
Malonyl Chloride 387
-Methacrolein N-tert-Butylimine 389
Methyl glycine 390
Methyl Isocyanate 393
S-Methylisothiourea 395
4-Methyloxazole 397
Methyl Thioglycolate 398
Oxo(trimanganese) Heptaacetate 401
Oxygen 402
Palladium(II) Acetate 415
Palladium(II) Chloride 449
Phenyl Isocyanide 467
Phenylhydrazine 468
Phenyliodine(III) Bis(trifluoroacetate) 472
Phosphorus Oxychloride 481
Pivalic Acid 489
Polyphosphoric Acid 497
Potassium Ethyl Xanthate 503
Potassium Monoperoxysulfate 512
Selenium(IV) Oxide 531
Semicarbazide 542
Silver(I) Hexafluoroantimonate 547
Sodium Nitrite 550
Sodium Sulfide 561
Sodium Tetrachloroaurate(III) 573
Sulfur 577
N,N,N',N'-Tetrabromobenzene-1,3-disulfonamide
(TBBDS) 583
Tetrakis(triphenylphosphine)-palladium(0) 585
3-Thiapentanedioic acid 594
Thiourea 596
o-Tolyl Isocyanide 598
p-Tolylsulfonylmethyl isocyanide 599
Trifluomethyldiazomethane 607
Trifluoroethylamine 612
Trifluoromethanesulfonic anhydride 616
1,1,1-Trifluoro-N-phenylmethanesulfenamide 633
2-(Trimethylsilyl)phenyl Triflate 635
Triphenylphosphinegold(I) Chloride 638
List of Contributors 000
Reagent Formula Index 000
Subject Index 000
Recent Review Articles and Monographs
Recent Reviews
- Abu-Shanab, F. A.; Sherif, S. M.; Mousa, S. A. S. Dimethylformamide dimethyl acetal as a building block in heterocyclic synthesis. J. Heterocycl. Chem. 2009, 46, 801–827.
- Ackermann, L. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C–H/Het–H bond functionalizations. Acc. Chem. Res. 2014, 47, 281–295.
- Armstrong, A.; Collins, J. C. Direct azole amination: C–H Functionalization functionalization as a new approach to biologically important heterocycles. Angew. Chem., Int. Ed. 2010, 49, 2282–2285.
- Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-α]pyridines: a decade update. Chem. Commun. 2015, 51, 1555–1575.
- Barluenga, J.; Rodriguez, F.; Fananas, F. J. Recent advances in the synthesis of indole and quinoline derivatives through cascade reactions. Chem. Asian J. 2009, 4, 1036–1048.
- Barluenga, J.; Valdes, C. Palladium catalyzed alkenyl amination: from enamines to heterocyclic synthesis. Chem. Commun. 2005, 4891–4901.
- Bartoli, G.; Dalpozzo, R.; Nardi, M. Applications of Bartoli indole synthesis. Chem. Soc. Rev. 2014, 43, 4728–4750.
- Batista, V. F.; Pinto, D. C. G. A.; Silva, A. M. S. Synthesis of quinolines: a green perspective. ACS Sustain. Chem. Eng. 2016, 4, 4064–4078.
- Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Alkenylation of arenes and heteroarenes with alkynes. Chem. Rev. 2016, 116, 5894–5986.
- Britsun, V. N.; Esipenko, A. N.; Lozinskii, M. O. Heterocyclization of thioamides containing an active methylene group (review). Chem. Heterocycl. Compd. 2008, 44, 1429–1459.
- Broere, D. L. J.; Ruijter, E. Recent advances in transition-metal-catalyzed [2+2+2]cyclo(co)trimerization reactions. Synthesis 2012, 44, 2639–2672.
- Cacchi, S.; Fabrizi, G. Update 1 of: Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev. 2011, 111, PR215–PR283.
- Cavitt, M. A.; Phun, L. H.; France, S. Intramolecular donor–acceptor cyclopropane ring-opening cyclizations. Chem. Soc. Rev. 2014, 43, 804–818.
- Chopade, P. R.; Louie, J. [2+2+2] cycloaddition Cycloaddition reactions catalyzed by transition metal complexes. Adv. Synth. Catal. 2006, 348, 2307–2327.
- Ciufolini, M. A.; Chan, B. K. Methodology for the synthesis of pyridines and pyridones: Development development and applications. Heterocycles 2007, 74, 101–124.
- Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750–5765.
- D'Souza, D. M.; Muller, T. J. J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev. 2007, 36, 1095–1108.
- Egi, M.; Akai, S. Transition metal-catalyzed intramolecular cyclization of propargyl alcohols and their derivatives for the synthesis of highly substituted five-membered oxygen heterocycles. Heterocycles 2015, 91, 931–958.
- El-Taweel, F. M. A.; Abou Elmaaty, T. M. Synthetic routes to selected heterocycles containing antipyrine moiety. J. Heterocycl. Chem. 2016, 53, 677–684.
- Estevez, V.; Villacampa, M.; Menendez, J. C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev. 2010, 39, 4402–4421.
- Estevez, V.; Villacampa, M.; Menendez, J. C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev. 2014, 43, 4633–4657.
- Fairlamb, I. J. S. Regioselective (site-selective) functionalisation of unsaturated halogenated nitrogen, oxygen and sulfur heterocycles by Pd-catalysed cross-couplings and direct arylation processes. Chem. Soc. Rev. 2007, 36, 1036–1045.
- Fang, G. C.; Bi, X. H. Silver-catalysed reactions of alkynes: recent advances. Chem. Soc. Rev. 2015, 44, 8124–8173.
- Foster, R. A. A.; Willis, M. C. Tandem inverse-electron-demand hetero-/retro-Diels–Alder reactions for aromatic nitrogen heterocycle synthesis. Chem. Soc. Rev. 2013, 42, 63–76.
- Gouda, M. A. Utility of 3-Aminoamino-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridine in heterocyclic synthesis. J. Heterocyclic Heterocycl. Chem. 2011, 48, 1–10.
- Hassan, A. A.; El-Sheref, E. M.; Abou-Zied, A. H. Heterocyclization of acylthiosemicarbazides. J. Heterocyclic Heterocycl. Chem. 2012, 49, 38–58.
- Heller, B.; Hapke, M. The fascinating construction of pyridine ring systems by transition metal-catalysed [2+2+2] cycloaddition reactions. Chem. Soc. Rev. 2007, 36, 1085–1094.
- Henry, G. D. De novo synthesis of substituted pyridines. Tetrahedron 2004, 60, 6043–6061.
- Heugebaert, T. S. A.; Roman, B. I.; Stevens, C. V. Synthesis of isoindoles and related iso-condensed heteroaromatic pyrroles. Chem. Soc. Rev. 2012, 41, 5626–5640.
- Hua, Y. R.; Flood, A. H. Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 2010, 39, 1262–1271.
- Janin, Y. L. Preparation and Chemistry chemistry of 3/5-halogenopyrazoles. Chem. Rev. 2012, 112, 3924–3958.
- Kamijo, S.; Yamamoto, Y. Recent progress in the catalysis synthesis in imidazoles. Chem. –Asian J. 2007, 2, 568–578.
- Kaur, T.; Wadhwa, P.; Bagchi, S.; Sharma, A. Isocyanide based [4+1] cycloaddition reactions: an indispensable tool in multi-component reactions (MCRs). Chem. Commun. 2016, 52, 6958–6976.
- Keiko, N. A.; Vchislo, N. V. Synthesis of imidazo[1,2-a]pyridines from alpha,beta-unsaturated aldehydes (microreview). Chem. Heterocycl. Compd. 2016, 52, 222–224.
- Kruger, K.; Tillack, A.; Beller, M. Catalytic Synthesis synthesis of Indoles indoles from Alkynesalkynes. Adv. Synth. Catal. 2008, 350, 2153–2167.
- Maji, P. K.; Ul Islam, R.; Bera, S. K. Recent progress in metal assisted multicomponent syntheses of heterocycles. Heterocycles 2014, 89, 869–962.
- Majumdar, K. C.; Debnath, P.; Roy, B. Metal-catalyzed heterocyclization: formation of five-and six-membered oxygen heterocycles through carbon–oxygen bond forming reactions. Heterocycles 2009, 78, 2661–2728.
- Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. The aza-Wittig reaction: an efficient tool for the construction of carbon–nitrogen double bonds. Tetrahedron 2007, 63, 523–575.
- Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Recent Developments developments in the Synthesis synthesis of Imidazoimidazo[1,2-a]pyridines. Synthesis 2015, 47, 887–912.
- Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C.; Perego, L. A. Synthesis of multiply arylated heteroarenes, including bioactive derivatives, via palladium-catalyzed direct C–H arylation of heteroarenes with (pseudo)aryl halides or aryliodonium salts. Synthesis 2014, 46, 2833–2883.
- Ruiz-Castillo, P.; Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 2016, 116, 12564–12649.
- Sabnis, R. W.; Rangnekar, D. W.; Sonawane, N. D. 2-aminothiophenes Aminothiophenes by the Gewald reaction. J. Heterocyclic Heterocycl. Chem. 1999, 36, 333–345.
- Sadig, J. E. R.; Willis, M. C. Palladium-and copper-catalyzed aryl halide amination, etherification and thioetherification reactions in the synthesis of aromatic heterocycles. Synthesis 2011, 1–22.
- Serrano-Molina, D.; Martin-Castro, A. M. Tandem sequences involving michael Michael additions and sigmatropic rearrangements. Synthesis 2016, 48, 3459–3469.
- Shestopalov, A. M.; Shestopalov, A. A.; Rodinovskaya, L. A. Multicomponent reactions of carbonyl compounds and derivatives of cyanoacetic acid: Synthesis synthesis of carbo-and heterocycles. Synthesis 2008, 1–25.
- Taber, D. F.; Tirunahari, P. K. Indole synthesis: a review and proposed classification. Tetrahedron 2011, 67, 7195–7210.
- Tanaka, K. Rhodium-Catalyzed catalyzed [2+2+2] Cycloaddition cycloaddition for the synthesis of substituted pyridines, pyridones, and thiopyranimines. Heterocycles 2012, 85, 1017–1043.
- Thirumalairajan, S.; Pearce, B. M.; Thompson, A. Chiral molecules containing the pyrrole framework. Chem. Commun. 2010, 46, 1797–1812.
- Wang, Y. L.; Zhang, L. M. Recent developments in the chemistry of heteroaromatic N-Oxidesoxides. Synthesis 2015,...
| Erscheint lt. Verlag | 31.5.2017 |
|---|---|
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
| Naturwissenschaften ► Chemie ► Physikalische Chemie | |
| Schlagworte | Chemie • Chemistry • heteroarenes heterocycles synthesis reagents catalysts reaction conditions safety purification storage • Heteroaromaten • Methods - Synthesis & Techniques • Natural Products • Naturstoffchemie • Organische Chemie • Organische Chemie / Methoden, Synthesen, Verfahren • Pharmaceutical & Medicinal Chemistry • Pharmazeutische u. Medizinische Chemie |
| ISBN-13 | 9781118704899 / 9781118704899 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich