Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Dielectrophoresis (eBook)

Theory, Methodology and Biological Applications
eBook Download: PDF
2017
John Wiley & Sons (Verlag)
978-1-118-67143-6 (ISBN)

Lese- und Medienproben

Dielectrophoresis - Ronald R. Pethig
Systemvoraussetzungen
122,99 inkl. MwSt
(CHF 119,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Comprehensive coverage of the  basic theoretical concepts and applications of dielectrophoresis from a world-renowned expert.

  • Features hot application topics including: Diagnostics, Cell-based Drug Discovery, Sensors for Biomedical Applications, Characterisation and Sorting of Stem Cells, Separation of Cancer Cells from Blood and Environmental Monitoring
  • Focuses on those aspects of the theory and practice of dielectrophoresis concerned with characterizing and manipulating cells and other bioparticles such as bacteria, viruses, proteins and nucleic acids.
  • Features the relevant chemical and biological concepts for those working in physics and engineering


Ronald Pethig
Emeritus Professor of Bioelectronics, The University of Edinburgh, UK


Comprehensive coverage of the basic theoretical concepts and applications of dielectrophoresis from a world-renowned expert. Features hot application topics including: Diagnostics, Cell-based Drug Discovery, Sensors for Biomedical Applications, Characterisation and Sorting of Stem Cells, Separation of Cancer Cells from Blood and Environmental Monitoring Focuses on those aspects of the theory and practice of dielectrophoresis concerned with characterizing and manipulating cells and other bioparticles such as bacteria, viruses, proteins and nucleic acids. Features the relevant chemical and biological concepts for those working in physics and engineering

Ronald Pethig Emeritus Professor of Bioelectronics, The University of Edinburgh, UK

Dielectrophoresis 3
Contents 9
Index of Worked Examples 13
Preface 15
Nomenclature 19
1 Placing Dielectrophoresis into Context as a Particle Manipulator 21
1.1 Introduction 21
1.2 Characteristics of Micro-Scale Physics 22
1.2.1 Exploiting Micro-Scale Physics 22
1.3 Microfluidic Manipulation and Separation of Particles 23
1.3.1 Defining the Performance of Cell Manipulators and Separators 23
1.4 Candidate Forces for Microfluidic Applications 24
1.4.1 Mechanical 24
1.4.2 Hydrodynamic 26
1.4.3 Acoustic 29
1.4.4 Optical 31
1.4.5 Electrical 32
1.4.6 Magnetic 37
1.4.7 Surface Forces (Cell Patterning) 44
1.5 Combining Dielectrophoresis with other Forces 45
1.5.1 Hybrid Dielectrophoresis-Magnetophoresis 45
1.5.2 Hybrid Dielectrophoresis-Acoustophoresis 46
1.5.3 Hybrid Dielectrophoresis Electrowetting 46
1.6 Summary 46
1.7 References 47
2 How does Dielectrophoresis Differ from Electrophoresis? 51
2.1 Introduction 51
2.2 Electric Field 52
2.3 Electrophoresis 53
2.4 Induced Surface Charge and Dipole Moment 58
2.5 Dielectrophoresis 60
2.6 Summary 66
2.6.1 Electrophoresis 66
2.6.2 Dielectrophoresis 67
2.7 References 67
3 Electric Charges, Fields, Fluxes and Induced Polarization 69
3.1 Introduction 69
3.2 Charges and Fields 70
3.2.1 Early Investigations of Electrostatic Interactions and Conduction 70
3.2.2 Electric Fields 75
3.3 Gausss Law 81
3.3.1 Alternative Forms of Gausss Law 83
3.3.2 Applications of Gausss Law 85
3.3.3 Summary Guidelines in Applying Gausss Law 91
3.4 Induced Dielectric Polarization 91
3.5 Capacitance 93
3.6 Divergence Theorem and Charge Density Relaxation Time 94
3.7 Summary 95
3.8 References 96
4 Electrical Potential Energy and Electric Potential 97
4.1 Introduction 97
4.2 Electrical Potential Energy 97
4.3 Electrical Potential 101
4.3.1 Molecular Electrical Potential Surface 106
4.4 Electrostatic Field Energy 107
4.4.1 Potential Energy of a Charged Capacitor 107
4.4.2 Energy of a Dielectric Particle in a Field 108
4.5 Summary 109
4.6 References 111
5 Potential Gradient, Field and Field Gradient Image Charges and Boundaries
5.1 Introduction 113
5.2 Potential Gradient and Electrical Field 113
5.3 Applying Laplaces Equation 116
5.3.1 Laplaces Equation in One Dimension 117
5.3.2 Laplaces Equation in Two and Three Dimensions 118
5.3.3 Solving Laplaces Equation by Separation of Variables 122
5.3.4 Multipole Expansion of a Potential 125
5.4 Method of Image Charges 130
5.4.1 Polarized Particle near an Electrode or Insulator Surface 131
5.5 Electric Field Gradient 132
5.6 Electrical Conditions at Dielectric Boundaries 134
5.7 Summary 136
5.8 References 137
6 The Clausius–Mossotti Factor 139
6.1 Introduction 139
6.2 Development of the Clausius–Mossotti–Lorentz Relation 141
6.2.1 Siméon Denis Poisson and George Green 141
6.2.2 Faraday, Mossotti, Clausius, Maxwell, Lorenz and Lorentz 144
6.2.3 Peter Debye 150
6.3 Refinements of the Clausius–Mossotti–Lorentz Relation 151
6.4 The Complex Clausius–Mossotti Factor 154
6.5 Summary 161
6.6 References 163
7 Dielectric Polarization 165
7.1 Introduction 165
7.2 Electrical Polarization at the Atomic and Molecular Levels 165
7.2.1 Nonpolar, Polar and Ionic Bonds 166
7.2.2 Polarization by Electronic and Atomic Distortion 166
7.2.3 Ionic Polarization 168
7.2.4 Polarization arising from Dipole Moment Orientation 170
7.3 Dipole Relaxation and Energy Loss 173
7.3.1 Complex Conductivity 176
7.3.2 Physical Models for Dipole Relaxation 177
7.4 Interfacial Polarization 179
7.4.1 Electrode Polarization 183
7.5 Summary 184
7.6 References 185
8 Dielectric Properties of Water, Electrolytes, Sugars, Amino Acids, Proteins and Nucleic Acids 187
8.1 Introduction 187
8.2 Water 187
8.2.1 Electrical Mobility of Protons 191
8.3 Electrolyte Solutions 192
8.3.1 Ions in Water 195
8.3.2 Aqueous Sugar Solutions 198
8.4 Amino Acids and Proteins in Solution 199
8.4.1 Amino Acids and Polypeptides 199
8.4.2 Proteins 203
8.5 Nucleic Acids 214
8.5.1 Dielectric Properties of Nucleic Acids 217
8.6 Summary 224
8.7 References 226
9 Dielectric Properties of Cells 233
9.1 Introduction 233
9.2 Cells: A Basic Description 233
9.3 Electrical Properties of Cells 234
9.3.1 Single Cell Measurements using Microcapillary Electrodes 238
9.4 Modelling the Dielectric Properties of Cells 242
9.4.1 Single-Shell Model of a Cell 245
9.4.2 Double-Shell Model of a Cell 250
9.5 Effect of Cell Surface Charge on Maxwell–Wagner Relaxation 253
9.6 Dielectric Properties of Bacteria 256
9.7 Summary 259
9.8 References 261
10 Dielectrophoresis: Theoretical and Practical Considerations 265
10.1 Introduction 265
10.2 Inherent Approximations in the DEP Force Equation 265
10.2.1 Field Gradient across a Particle 265
10.2.2 Macroscopic Clausius–Mossotti Factor 266
10.2.3 The DEP Force Equation 267
10.3 Refinements of the DEP Force Equation 269
10.3.1 The Induced Dipole Approximation 269
10.3.2 Consideration of Electrical Energy Loss 271
10.3.3 Assumption of a Quasi-Static, Stationary AC Field 283
10.3.4 Rotating Fields and Electrorotation 285
10.3.5 Traveling Fields and Traveling Wave Dielectrophoresis (TWD) 292
10.3.6 Particle Inhomogeneity, Net Charge and Surface Conductance 295
10.3.7 Presence of Perturbing Particles or Boundaries 296
10.4 Electrodes: Fabrication, Materials and Modelling 301
10.4.1 Metal Electrodes 301
10.4.2 Insulator-Based Dielectrophoresis (iDEP) 305
10.4.3 Liquid Electrodes 311
10.4.4 Carbon Electrodes 311
10.4.5 DEP ‘Tweezers’ 312
10.4.6 Isodielectric Cell Separation 314
10.5 The Second (High-Frequency) DEP Crossover Frequency (fxo2) 316
10.6 Summary 318
10.7 References 320
11 Dielectrophoretic Studies of Bioparticles 329
11.1 Introduction 329
11.2 DEP Characterization and Separation of Live and Dead Cells 329
11.2.1 Types of Cell Death 329
11.2.2 Yeast Cells 330
11.2.3 Yeast as a Model Cell for DEP Studies 338
11.2.4 Bacteria 339
11.2.5 Mammalian Cell Apoptosis 347
11.3 Mammalian Cells 352
11.3.1 Blood Cells 352
11.3.2 Cancer Cells 355
11.3.3 Stem Cells 358
11.3.4 Neurons 361
11.3.5 Spermatozoa 362
11.3.6 Bio-Mechanical Properties 363
11.4 Bacteria 365
11.5 Other Cell Types (Plant, Algae, Oocytes, Oocysts) and Worms 367
11.6 Virions 371
11.7 Nucleic Acids and Proteins 376
11.7.1 DNA 376
11.7.2 RNA 384
11.7.3 Proteins 385
11.8 Summary 389
11.9 References 390
12 Microfluidic Concepts of Relevance to Dielectrophoresis 401
12.1 Introduction 401
12.2 Gases and Liquids 401
12.2.1 Gases 401
12.2.2 Liquids 402
12.3 Fluids Treated as a Continuum 404
12.3.1 Density 404
12.3.2 Temperature 404
12.3.3 Viscosity 404
12.4 Basic Fluid Statics and Fluid Dynamics 405
12.4.1 Static Fluid Pressure and Pascals Law 405
12.4.2 Conservation of Mass Principle (Continuity Equation) 405
12.4.3 Bernoullis Equation (Conservation of Energy) 406
12.4.4 Poiseuilles Law (Flow Resistance) 407
12.4.5 Laminar Flow 408
12.4.6 Application of Kirchhoffs Laws (Electrical Analogue of Fluid Flow) 411
12.5 Navier–Stokes Equations 412
12.5.1 Conservation of Mass Equation 412
12.5.2 Conservation of Momentum Equation (Navier–Stokes Equation) 413
12.5.3 Conservation of Energy Equation 414
12.6 Diffusion 414
12.6.1 The Peclet Number: Transport by Advection or Diffusion? 416
12.7 Ionic (Electrical) Double Layer 417
12.7.1 The Debye Screening Length 418
12.7.2 The Gouy–Chapman Equation 418
12.7.3 Sterns Modification of the Gouy–Chapman Equation 419
12.7.4 Hydrodynamic Plane of Shear and the Zeta Potential 420
12.8 Electro-osmosis 420
12.9 Summary 423
12.10 References 424
Appendices 425
Appendix A: Values of Fundamental Physical Constants 425
Appendix B: SI Prefixes 425
Appendix C: The Base Quantities in the SI System of Units 425
Appendix D: Derived Physical Quantities, their Defining Equation or Law and Dimensions 425
Appendix E: Diffusion Coefficients for Molecules and Ions in Water at 298 K 426
Appendix F: Diffusion Coefficients for Bio-Particles in Water at 293 K 426
Appendix G: Viscosity and Surface Tension Values for Liquids at 293 K 426
Appendix H: Activity Coefficients for Common Compounds that Dissociate into Ions in Solution 426
Appendix I: Electrical Mobility of Ions at 25 °C in Dilute Aqueous Solution 426
Appendix J: Buffering Systems and their pH Buffering Range 426
Appendix K: Composition of 1 L of Human Blood 427
Appendix L: Blood Cells, Platelets and Some Pathogenic Bioparticles 427
L.1 Blood Fractionation 427
L.2 Bacteria 428
L.3 Fungal and Protozoal Cells 429
L.4 Viruses 429
L.5 Prions 429
Author Index 431
Subject Index 443
EULA 449

Erscheint lt. Verlag 24.2.2017
Sprache englisch
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Technik Umwelttechnik / Biotechnologie
Schlagworte Analytical Chemistry • Analytische Chemie • Biodielectrics • biomedical engineering • Biomedizintechnik • Bioparticles • Biotechnology • cell separation • Chemie • Chemistry • Dielectrophoresis • Electrokinetics • Lab-on-Chip • Microfabrication • microfluidics • Molecular Bioengineering • Molekulares Bioengineering • nanotechnology • Pharmaceutical & Medicinal Chemistry • Pharmazeutische u. Medizinische Chemie
ISBN-10 1-118-67143-0 / 1118671430
ISBN-13 978-1-118-67143-6 / 9781118671436
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

eBook Download (2023)
De Gruyter (Verlag)
CHF 58,55