Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science and Technology of Separation Membranes (eBook)

Tadashi Uragami (Herausgeber)

eBook Download: PDF
2017
John Wiley & Sons (Verlag)
978-1-118-93257-5 (ISBN)

Lese- und Medienproben

Science and Technology of Separation Membranes -
Systemvoraussetzungen
267,99 inkl. MwSt
(CHF 259,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Offers a comprehensive overview of membrane science and technology from a single source
  • Written by a renowned author with more than 40 years' experience in membrane science and technology, and polymer science
  • Covers all major current applications of membrane technology in two definitive volumes
  • Includes academic analyses, applications and practical problems for each existing membrane technology
  • Includes novel applications such as membrane reactors, hybrid systems and optical resolution as well as membrane fuel cells


Tadashi Uragami, Functional Separation Membrane Research Center, Japan


Offers a comprehensive overview of membrane science and technology from a single source Written by a renowned author with more than 40 years experience in membrane science and technology, and polymer science Covers all major current applications of membrane technology in two definitive volumes Includes academic analyses, applications and practical problems for each existing membrane technology Includes novel applications such as membrane reactors, hybrid systems and optical resolution as well as membrane fuel cells

Tadashi Uragami, Functional Separation Membrane Research Center, Japan

Volume I 3
Title Page 5
Copyright Page 6
Contents 7
Preface 21
Acknowledgements 25
Chapter 1 Introduction to Membrane Science and Technology 27
1.1 History of Membrane Science and Technology 27
1.2 Membrane Module 32
1.2.1 Plate-and-Frame Modules 32
1.2.2 Tubular Modules 32
1.2.3 Spiral-Wound Modules 32
1.2.4 Hollow-Fibre Modules 32
1.3 Necessity of Membrane Science and Technology 33
References 34
Chapter 2 Membrane Structure 39
2.1 Structural Design of Membranes 39
2.1.1 Chemical Design of Membrane Materials 39
2.1.2 Physical Construction of Separation Membranes 39
2.2 Symmetric Non-porous and Porous Membranes 40
2.3 Asymmetric and Composite Membranes 41
2.4 Relation between Structure and Preparation Condition of Membrane 42
2.4.1 Preparation of Casting Solution 43
2.4.1.1 Kind of Polymer Material 43
2.4.1.2 Polymer Concentration in Casting Solution 43
2.4.1.3 Casting Solvent 45
2.4.1.4 Combination of Casting Solvent 49
2.4.1.5 Addition of Additive in Casting Solution 51
2.4.1.6 Temperature of Casting Solution 53
2.4.2 Casting Condition 55
2.4.2.1 Temperature and Humidity during Casting 55
2.4.2.2 Evaporation Period 55
2.4.3 Gelation Condition 57
2.4.3.1 Gelation Period and Temperature 57
2.4.3.2 The Kind of Gelation Medium 58
2.4.4 Post-treatment 61
2.4.4.1 Method of Heat Treatment 61
2.4.4.2 Temperature and Period of Heat Treatment 61
2.4.4.3 Pressure Treatment 68
2.4.4.4 Elongation Treatment 69
2.4.4.5 Post-reaction 69
2.4.4.6 Post-solvent Treatment 73
2.5 Structure of Liquid Membranes 76
2.5.1 Bulk Liquid Membrane 76
2.5.2 Emulsion Liquid Membrane 77
2.5.3 Supported Liquid Membrane 78
2.5.3.1Thin-Porous-Film-Supported Liquid Membrane 78
2.5.3.2 Hollow-Fibre-Supported Liquid Membrane 78
2.6 Structure of Inorganic Membranes 79
References 79
Chapter 3 Preparation Methods of Membranes 85
3.1 Polymer Membranes 85
3.1.1 Solution-Casting Method 85
3.1.1.1 Thermally Induced Phase Separation 86
3.1.1.2 Diffusionally Induced Phase Separation 90
3.1.1.3 Drying-Induced Phase Separation 93
3.1.1.4 Vapour-Induced Phase Separation 95
3.1.2 Composite Method 98
3.1.3 Casting–Reaction Method 99
3.1.4 Polyion Complex Method 99
3.1.5 Freeze-Dry Method 99
3.1.6 Chemical Modification 99
3.1.7 Filling Polymerization Method 99
3.1.8 Expansion Method 100
3.2 Inorganic Membranes 100
3.2.1 Process for Preparation 101
3.3 Organic–Inorganic Hybrid Membranes 101
3.4 Liquid Membranes 102
3.4.1 Carrier 102
3.4.2 Solvent 102
3.4.3 Emulsion 105
3.4.4 Support 105
References 106
Chapter 4 Membrane Shapes and Modules 113
4.1 Membrane Shapes 113
4.1.1 Flat-Sheet Membranes 113
4.1.2 Spiral Membranes 115
4.1.3 Tubular Membranes 115
4.1.4 Capillary Membrane 117
4.1.5 Hollow-Fibre Membrane 119
4.2 Membrane Module 120
4.2.1 Plate–Frame Module 121
4.2.2 Spiral Module 122
4.2.3 Tubular Module 123
4.2.4 Hollow-Fibre Module 124
4.2.5 Types of Membrane Filtration Modules 125
4.2.6 Durability of Membrane Modules 126
4.2.7 Degradation of Membrane Module Materials 126
4.2.8 Decline of Membrane Performance 127
References 128
Chapter 5 Characterization of Membrane 131
5.1 Methods and Subjects of Evaluation 131
5.1.1 Bubble-Point Method 131
5.1.2 Mercury Intrusion Porosimetry 133
5.1.3 Adsorption–Desorption Method (BET Method) 136
5.1.4 Scanning Electron Microscope 137
5.1.4.1 Sample Preparation 137
5.1.5 Transmission Electron Microscopy 137
5.1.5.1 Sample Preparation 138
5.1.5.2 Tissue Sectioning 138
5.1.5.3 Sample Staining 138
5.1.6 Environmental Scanning Electron Microscope 139
5.1.7 Atomic Force Microscopy 140
5.1.8 Infrared Spectroscopy 142
5.1.9 Fourier-Transform Infrared Spectroscopy 143
5.1.10 X-Ray Photoelectron Spectroscopy or Electron Spectroscopy for Chemical Analysis 145
5.1.11 Wide-Angle X-Ray Scattering or Wide-Angle X-Ray Diffraction 148
5.1.12 Small-Angle Neutron Scattering 151
5.1.13 Positron Annihilation Spectroscopy or Positron Annihilation Lifetime Spectroscopy 151
5.1.14 Contact Angle 153
5.1.15 Zeta Potential 155
5.1.16 Differential Scanning Calorimetry 157
5.1.17 Thermogravimetry 159
5.1.17.1 Characteristics and Applications of Thermogravimetric Analysis 160
5.1.18 Membrane Density 161
5.1.19 Cross-link Density 162
5.1.20 Degree of Membrane Swelling 163
5.1.21 Sorption Selectivity 165
5.1.22 Burst and Tensile Strength of Membrane 167
References 168
Chapter 6 Fundamentals of Membrane Transport Phenomena 173
6.1 Thermodynamical Fundamentals for Membrane Transport 173
6.1.1 Thermodynamics of Membrane Transport 173
6.1.2 Volume Flow and Diffusion Flow 176
6.1.3 Mobility and Diffusion Coefficient 179
6.1.4 Surface Potential and Membrane Potential 183
6.1.5 Distribution Coefficient and Membrane Permeability Coefficient 188
6.2 Solution-Diffusion Model 192
6.2.1 Fundamentals of Solution-Diffusion 192
6.2.2 Solution-Diffusion Model 194
6.3 Pore Flow 197
6.3.1 Pore-Flow Model 197
6.3.2 Knudsen Diffusion 199
6.3.3 Surface Diffusion 200
6.3.3.1 Fundamentals of Surface Diffusion 200
6.3.3.2 Microporous Membrane and Surface Transport 201
References 203
Chapter 7 Phenomena during Membrane Permeation and Separation 207
7.1 Concentration Polarization 207
7.1.1 State of Boundary Layer on Membrane Surface 209
7.1.2 Concentration Polarization in Gas Separation 210
7.1.3 Concentration Polarization in Pervaporation 211
7.1.4 Concentration Polarization in Reverse Osmosis 212
7.1.5 Concentration Polarization in Nanofiltration 214
7.1.6 Concentration Polarization in Ultrafiltration 216
7.1.7 Concentration Polarization in Microfiltration 217
7.1.8 Concentration Polarization in Membrane Distillation 219
7.1.9 Concentration Polarization in Dialysis 220
7.1.10 Concentration Polarization in Electrodialysis 221
7.2 Membrane Fouling 223
7.2.1 Cause of Membrane Fouling 223
7.2.2 Control of Membrane Fouling 225
References 225
Chapter 8 Dialysis 231
8.1 Diffusion Dialysis 231
8.1.1 Principle of Diffusion Dialysis 232
8.1.2 Fundamental Analysis of Diffusion Dialysis 232
8.1.2.1 Diffusion and Diffusion Dialysis 233
8.1.2.2 Diffusion Dialysis with Crossflow 235
8.1.3 Membranes for Diffusion Dialysis 237
8.1.4 Technologies 239
8.1.4.1 Diffusion Dialysis 239
8.1.4.2 Haemodialysis 246
8.2 Donnan Dialysis 250
8.2.1 Principle of Donnan Dialysis 250
8.2.2 Membranes and Technology of Donnan Dialysis 251
8.3 Neutralization Dialysis 252
8.3.1 Principle of Neutralization Dialysis 252
8.3.2 Membranes and Technologies of Neutralization Dialysis 253
8.4 Piezodialysis 254
8.4.1 Membranes for Piezodialysis 254
8.4.2 Principle and Fundamental Analysis of Piezodialysis 256
8.4.3 Technologies of Piezodialysis 257
8.5 Electrodialysis 259
8.5.1 Principle of Electrodialysis 259
8.5.2 Fundamental Analysis of Electrodialysis 259
8.5.3 Membranes of Electrodialysis 261
8.5.3.1 Fundamental Characteristics 261
8.6 Technologies of Electrodialysis 263
8.6.1 Salt Production 263
8.6.2 Recovery 266
8.6.3 Water Desalination 267
8.6.4 Production of Organic Acid 269
8.7 Electrodialysis with Bipolar Membranes 270
8.7.1 Principle and Fundamental of Bipolar Membrane Electrodialysis 270
8.7.2 Technologies of Bipolar Membrane Electrodialysis 272
References 277
Chapter 9 Reverse Osmosis 285
9.1 Principle of Reverse Osmosis 285
9.2 Fundamental Analysis of Reverse Osmosis 285
9.2.1 Nonequilibrium Thermodynamics Model 287
9.2.2 Friction Model 288
9.2.3 Solution-Diffusion Model 289
9.2.4 Micropore Model 289
9.2.5 Preferential Sorption-Capillary Flow Model 290
9.3 Materials and Structures of Reverse Osmosis Membranes 292
9.4 Concentration Polarization and Fouling 296
9.4.1 Concentration Polarization 296
9.4.2 Fouling of Reverse Osmois 298
9.5 Technologies and Applications of Reverse Osmosis 300
9.5.1 Polymer Membranes 300
9.5.1.1 Cellulose Acetate Membranes 300
9.5.1.2 Composite Polyamide Membranes 300
9.5.2 Inorganic Membranes 304
9.5.3 Mixed Matrix Membranes 307
9.5.3.1 Composite Membranes of Nanoparticle–Polymer 308
9.5.3.2 Composite Membranes of Carbon Nanotube–Polymer 309
9.5.4 Organic–Inorganic Hybrid Membranes 310
9.5.5 Boron Separation in Reverse Osmosis 311
9.5.6 Removal of Radioactive Materials by Reverse Osmosis Membrane 314
9.6 Membrane Module of Reverse Osmosis 315
9.6.1 Spiral-Wound Membrane Module 315
9.6.2 Hollow-Fibre Membrane Module 316
9.7 Membrane Cleaning 317
References 318
Chapter 10 Nanofiltration 323
10.1 Principle of Nanofiltration 323
10.2 Fundamental Analysis of Nanofiltration 323
10.2.1 Permeation Characteristics of Nanofiltration 323
10.2.2 Concentration Characteristics of Nanofiltration 325
10.3 Membranes and Modules for Nanofiltration 326
10.3.1 Membranes for Nanofiltration 326
10.3.1.1 Surface Modification 327
10.3.1.2 Interfacial Polymerization 327
10.3.1.3 Composite 329
10.3.1.4 Hollow Fibre 331
10.3.1.5 Hybrid Membrane 332
10.3.1.6 Solvent-Resistant Membranes 333
10.3.2 Module for Nanofiltration 334
10.3.2.1 Spiral-Wound Module 334
10.3.2.2 Tubular Module 334
10.4 Concentration Polarization and Membrane Fouling in Nanofiltration 334
10.4.1 Concentration Polarization in Nanofiltration 334
10.4.2 Membrane Fouling in Nanofiltration 335
10.4.3 Antifouling in Nanofiltration 335
10.5 Technology 337
10.5.1 Treatment of Fresh, Process and Waste Waters 337
10.5.2 Food, Dairy and Beverage 339
10.5.3 Chemical Processing 340
10.5.4 Pulp, Paper and Textile Industry 342
10.5.5 Nanofiltration in Organic Solvents 344
References 344
Chapter 11 Ultrafiltration 351
11.1 Principle of Ultrafiltration 351
11.2 Fundamental Analysis of Ultrafiltration 351
11.2.1 Phenomenological Treatment of Membrane Permeation 351
11.2.2 Pore Model 353
11.2.3 Rejection Rate and Concentration Polarization 353
11.2.4 Concentration Magnification and Rejection Rate 354
11.2.5 Molecular Weight Cut-off 357
11.2.6 Batch-Style Concentration 358
11.3 Membranes for Ultrafiltration 359
11.3.1 Organic Membranes 359
11.3.2 Inorganic Membrane 359
11.4 Ultrafiltration Modes 359
11.4.1 Batch Concentration 359
11.4.2 Multistage Continuous Concentration 360
11.4.3 Batch Diafiltration 360
11.4.4 Continuous Diafiltration 360
11.5 Concentration Polarization and Fouling in Ultrafiltration 361
11.5.1 Concentration Polarization in Ultrafiltration 361
11.5.2 Fouling in Ultrafiltration 364
11.6 Ultrafiltration Technology 368
11.6.1 Modules of Ultrafiltration 368
11.6.1.1 Plate-and-Frame Module 368
11.6.1.2 Spiral-Wound Module 369
11.6.1.3 Tubular Module 369
11.6.1.4 Hollow-Fibre Module 369
11.7 Ultrafiltration Applications 369
11.7.1 Drinking Water 369
11.7.2 Protein Concentration 370
11.7.3 Enzyme Recovery 371
11.7.4 Wastewater 372
11.7.5 Recycling of Water 373
11.7.6 Produced Water 374
11.7.7 Oil and Gas Wastewater Treatment 375
11.7.8 Recovery of Electrodeposition Paint 376
11.7.9 Pulp and Paper 376
11.7.10 Chemical Solutions 377
11.7.11 Saccharification 377
11.7.12 Wine Production 378
11.7.13 Blood Filtration 378
References 381
Chapter 12 Microfiltration 385
12.1 Principle of Microfiltration 385
12.2 Fundamental Analysis of Microfiltration 386
12.2.1 Dead-end Filtration 386
12.2.2 Crossflow Filtration 388
12.3 Membranes for Microfiltration 389
12.3.1 Membrane Materials 389
12.3.1.1 Polymer Membranes 389
12.3.1.2 Inorganic Membranes 390
12.4 Fouling in Microfiltration 391
12.5 Module of Microfiltration 394
12.5.1 Plate-and-Frame Module 394
12.5.2 Spiral-Wound Module 394
12.6 Microfiltration Technology 394
12.6.1 Water Treatment 394
12.6.2 Dairy Industry 396
12.6.3 Sterilization 397
12.6.4 Virus Removal 399
12.6.5 Oil Refining 400
References 401
Chapter 13 Comparison of Pressure-Driven Membrane Separation Processes 405
13.1 Pressure-Driven Membrane Separation Technologies 405
13.2 Problems of Reverse Osmosis and Nanofiltration 408
References 409
Supplemental Images 411
Volume II 3
Title Page 416
Copyright Page 416
Contents 418
Preface 432
Acknowledgements 436
Chapter 14 Forward Osmosis 438
14.1 Principle of Forward Osmosis 438
14.2 Advantages and Problems of Forward Osmosis 438
14.3 Fundamental Analysis of Forward Osmosis 440
14.4 Membranes and Modules for Forward Osmosis 440
14.4.1 Membranes for Forward Osmosis 440
14.4.2 Modules for Forward Osmosis 443
14.5 Technology 444
14.6 Application Area of Forward Osmosis Process 444
14.6.1 Seawater Desalination 444
14.6.2 Wastewater Treatment and Water Purification 447
14.6.3 Pharmaceutical Applications 449
14.6.4 Food Processing 449
14.6.5 Power Generation 452
14.7 Improvement of Forward Osmosis Membrane Performance 454
14.7.1 Improvement of Forward Osmosis Membrane 454
14.7.2 Improvement of Draw Solution 456
14.7.3 Reproduction of Draw Solution 458
14.8 Fouling in Forward Osmosis 459
References 461
Chapter 15 Pervaporation 466
15.1 Principle of Pervaporation 466
15.2 Fundamental Analysis of Pervaporation 467
15.2.1 Fundamental Permeation Equation 467
15.2.2 Solution-Diffusion Model 468
15.2.3 Separation Factor 469
15.2.4 Quantitative Treatment of Separation Factor 469
15.3 Membranes for Pervaporation 470
15.3.1 Materials of Pervaporation Membrane 470
15.3.1.1 Hydrophilic Membrane Materials 470
15.3.1.2 Hydrophobic Membrane Materials 471
15.3.2 Membrane Structure 473
15.3.2.1 Symmetric Membranes 473
15.3.2.2 Asymmetric Membranes 474
15.3.2.3 Composite Membranes 475
15.3.2.4 Hybrid Membranes 477
15.3.2.5 Inorganic Membranes 480
15.4 Technologies 481
15.4.1 Dehydration 482
15.4.1.1 Water–Alcohol Dehydration 482
15.4.1.2 Water–Organic Dehydration 486
15.4.2 Organic Separation from Water 489
15.4.2.1 Alcohol-Selective Concentration 489
15.4.2.2 Organic Selective Removal 494
15.4.3 Organic Mixture Separation 501
15.4.3.1 Benzene–Cyclohexane Separation 501
15.4.3.2 Organic–Organic Separation 505
15.4.3.3 Separation of Methyl tert-Butyl Ether–Methanol and Ethyl tert-Butyl Ether–Ethanol Mixtures 506
15.4.3.4 Separation of Xylene Isomers 508
15.4.3.5 Separation of Alcohol Isomers 510
15.4.3.6 Separation of Hydrocarbon Isomers 511
15.4.3.7 Separation of Organic–Organic Azeotropes 511
15.4.4 Desalination by Pervaporation 512
References 514
Chapter 16 Evapomeation 524
16.1 Principle of Evapomeation 524
16.2 Membranes of Evapomeation 525
16.3 Technology of Evapomeation 528
16.3.1 Comparison of Membrane Performance in Pervaporation and Evapomeation 528
16.3.1.1 Water Permselectivity 528
16.3.1.2 Organic Permselectivity 534
16.3.1.3 Permselectivity of Isomers 536
16.3.2 Effect of Cyclodextrin Content on Permeation and Separation Characteristics of Xylene Isomers 539
16.3.3 Dehydration of Organic Liquid in Evapomeation 542
16.3.4 Concentration of Organic Liquid by Evapomeation 553
16.3.5 Separation of Optical Enantiomers by Evapomeation 554
16.3.6 Acceleration of Chemical Reaction by Evapomeation Technique 555
References 555
Chapter 17 Temperature-Difference Controlled Evapomeation 562
17.1 Principle of Temperature-Difference Controlled Evapomeation 562
17.2 Membranes of Temperature-Difference Controlled Evapomeation 562
17.3 Technology of Temperature-Difference Controlled Evapomeation 563
17.3.1 Comparison of Membrane Performance in Evapomeation and Temperature-Difference Controlled Evapomeation 563
17.3.2 Preparation of Porous Poly(dimethylsiloxane) Membranes 577
References 586
Chapter 18 Membrane Distillation 588
18.1 Principle of Membrane Distillation 588
18.1.1 Direct Contact Membrane Distillation 588
18.1.2 Vacuum Membrane Distillation 588
18.1.3 Air Gap Membrane Distillation 589
18.1.4 Sweep Gas Membrane Distillation 590
18.2 Fundamental Analysis of Membrane Distillation 590
18.2.1 Mass Transfer in Membrane Distillation 590
18.2.1.1 Direct Contact Membrane Distillation 591
18.2.1.2 Vacuum Membrane Distillation 593
18.2.1.3 Air Gap Membrane Distillation 593
18.2.1.4 Sweep Gas Membrane Distillation 594
18.3 Membranes of Membrane Distillation 594
18.3.1 Membrane Materials 594
18.3.2 Membranes of Membrane Distillation 595
18.3.2.1 Membrane Structure 595
18.3.2.2 Electrospun Membranes in Membrane Distillation 597
18.3.3 Membrane Modules 598
18.3.3.1 Plate-and-Frame Module 598
18.3.3.2 Tubular and Hollow-Fibre Module 598
18.3.4 Solar-Powered Membrane Distillation 598
18.4 Technologies of Membrane Distillation 599
18.4.1 Comparison of Various Membrane Distillations 599
18.4.2 Desalination and Removal of Salt 600
18.4.2.1 Desalination 600
18.4.2.2 Removal of Salt 601
18.4.3 Drinking Water 601
18.4.4 Wastewater 602
18.4.5 Food 603
18.4.6 Concentration and Removal of Organics 604
18.4.6.1 Concentration 604
18.4.6.2 Removal 605
References 606
Chapter 19 Gas Permeation 612
19.1 Beginning of Gas Permeation 612
19.2 Fundamentals of Gas Permeation 613
19.2.1 Permeation and Separation of Gas through a Rubbery Membrane 613
19.2.1.1 Permeability Coefficient 613
19.2.1.2 Diffusion Coefficient 615
19.2.1.3 Separation Factor 615
19.2.2 Membrane Permeation of Gas through a Glassy Membrane 616
19.2.2.1 Dual Sorption Model Theory 616
19.2.2.2 Partial Immobilization Model 617
19.2.3 Application to Gas Separation 619
19.3 Membranes for Gas Permeation 620
19.3.1 Membranes from Natural Polymers 621
19.3.2 Membranes from Synthetic Polymers 622
19.3.2.1 Polyamides, Polyimides, Poly(phenylene oxide) and Fluoropolymers 622
19.3.2.2 Polysulfone 624
19.3.2.3 Silicon Polymers 624
19.3.3 Blend, Composite and Hybrid Membranes 625
19.3.4 Membranes from Organic–Inorganic Hybridization 627
19.4 Membranes from Inorganic Materials 628
19.4.1 Metal Membranes 628
19.4.2 Ceramic Membranes 628
19.4.3 Zeolite Membranes 629
19.4.4 Carbon Membranes 630
19.5 Modules of Gas Separation Membrane 630
19.6 Technology of Gas Permeation Membrane 630
19.6.1 Hydrogen Separation 630
19.6.2 Oxygen Production 631
19.6.3 Carbon Dioxide Separation 632
19.6.4 Helium Separation 633
19.6.5 Methane Production 633
19.6.6 Separation of Some Gases 634
19.6.7 Olefin–Paraffin Separation 634
References 636
Chapter 20 Carrier Transport 640
20.1 Fundamental Principle of Carrier Transport through Artificial Membranes 640
20.1.1 Passive Transport 640
20.1.2 Facilitated Transport 641
20.1.3 Active Transport 643
20.2 Carriers in Membrane Transport 644
20.2.1 Role of Carrier 644
20.2.2 Membranes for Carrier Transport 645
20.3 Technology of Carrier Transport Membranes 649
20.3.1 Mobile Carrier Membranes 649
20.3.1.1 Transport and Separation of Inorganic Cations 649
20.3.1.2 Transport and Separation of Inorganic Anions 652
20.3.1.3 Transportation and Separation of Organic Compounds 653
20.3.1.4 Transport and Separation of Gas 655
20.3.1.5 Transport of Radioactive Ions 656
20.3.2 Fixed Carrier Membranes 658
20.3.2.1 Transport and Separation of Inorganic Cations 658
20.3.2.2 Transport and Separation of Inorganic Anions 666
20.3.2.3 Transport and Separation of Organic Compounds 669
20.3.2.4 Transport and Separation of Gas 675
20.3.2.5 Transport of Radioactive Ions 679
20.3.3 Improvement of Transport Efficiency in Carrier Transport 680
References 682
Chapter 21 Membrane Reactor 688
21.1 Concept of Membrane Reactors 688
21.2 Membranes for Membrane Reactors 688
21.2.1 Inorganic Membranes 688
21.2.1.1 Metal Membranes 690
21.2.1.2 Ceramic Membranes 691
21.2.1.3 Zeolite Membranes 692
21.2.1.4 Carbon Membranes 692
21.2.2 Polymer Membranes 692
21.3 Technology of Membrane Reactors 693
21.3.1 Catalytic Membrane Reactors 693
21.3.1.1 Biocatalyst-Immobilized Polymer Membranes 693
21.3.1.2 Technology of Biocatalyst-Immobilized Polymer Membranes in Membrane Reactors 693
21.3.1.3 Polymer–Metal Complex Membranes 699
21.3.1.4 Polymer Catalysis Membranes 702
21.3.1.5 Ion-Exchange Resins and Ion-Exchange Membranes in Membrane Reactor 703
21.3.1.6 Metal Membranes 704
21.3.1.7 Ceramic Membranes 707
21.3.1.8 Polymer–Metal Composite Membranes 708
21.3.2 Membrane Reactor with Pervaporation and Evapomeation 708
21.3.2.1 Membrane Reactor with Pervaporation 708
21.3.2.2 Membrane Reactor with Evapomeation 714
21.3.2.3 Combination of Fermentation Tank and Temperature-Difference Controlled Evapomeation 714
References 714
Chapter 22 Membrane Contactors 720
22.1 Principle and Fundamentals of Membrane Contactors 720
22.2 Membranes for Membrane Contactors 722
22.2.1 Inorganic Membranes 722
22.2.2 Organic Membranes 723
22.2.3 Organic–Inorganic Hybrid Membranes 723
22.3 Technology of Membrane Contactors 725
22.3.1 Liquid–Liquid Membrane Contactors 725
22.3.2 Gas–Liquid Membrane Contactors 726
22.3.3 Gas–Gas Membrane Contactors 728
22.3.4 Membrane Contactors Promoting Chemical Reaction 729
References 729
Chapter 23 Fuel Cell Membranes 732
23.1 Principles of the Fuel Cell 732
23.2 Good Points of Fuel Cells 733
23.3 Membranes for Fuel Cells 734
23.3.1 Polymer Membranes 734
23.3.2 Ceramic Membranes 734
23.4 Technology of Fuel Cells 735
23.4.1 Technology of Fuel Cells with Polymer Electrolyte Membranes 735
23.4.2 Technology of Fuel Cells with Inorganic Electrolyte Membranes 738
23.4.3 Technology of Fuel Cells with Nanocomposite and Organic–Inorganic Composite Electrolyte Membranes 740
References 744
Chapter 24 Hybrid Systems of the Membrane Separation Process 748
24.1 Hybrid Systems of Membrane Technology and Reactive Production Step, Other Separation Technology 748
24.2 Hybrid Systems with Plural Membrane Technology 758
24.2.1 Haemodialysis–Dialysis Hybrid 758
24.2.2 Dialysis–Reverse Osmosis Hybrid 759
24.2.3 Nanofiltration–Reverse Osmosis Hybrid 759
24.2.4 Ultrafiltration–Reverse Osmosis Hybrid 760
24.2.5 Microfiltration–Reverse Osmosis Hybrid 761
24.2.6 Ultrafiltration–Nanofiltration Hybrid 762
24.2.7 Ultrafiltration–Membrane Distillation Hybrid 762
24.2.8 Membrane Distillation–Forward Osmosis Hybrid 762
24.2.9 Electrodialysis–Forward Osmosis Hybrid 763
24.2.10 Forward Osmosis–Reverse Osmosis Hybrid 764
24.2.11 Forward Osmosis–Nanofiltration Hybrid 764
24.2.12 Forward Osmosis–Electrokinetic Hybrid 764
24.2.13 Nanofiltration–Forward Osmosis–Reverse Osmosis Hybrid 765
24.2.14 Ultrafiltration–Reverse Osmosis–Electrodialysis Reversal Hybrid 766
References 766
Chapter 25 Optical Resolution by Membranes 770
25.1 Present Conditions and Problem of Optical Resolution with Membranes 770
25.2 Membranes for Optical Resolution 771
25.2.1 Liquid Membranes 771
25.2.1.1 Emulsion Liquid Membrane 773
25.2.1.2 Bulk Liquid Membrane 773
25.2.1.3 Supported Liquid Membrane 773
25.2.2 Polymer Membranes 773
25.3 Technology of Optical Resolution Membranes 774
25.3.1 Liquid Membranes in Optical Resolution 774
25.3.2 Solid Membranes in Optical Resolution 776
References 783
Chapter 26 Material Separations by Other Membrane Processes 788
26.1 Carbon Nanotube Membranes 788
26.1.1 Fabrication of Carbon Nanotubes 788
26.1.2 Chemical Modification of Carbon Nanotubes 788
26.2 Graphene Membranes 789
26.3 Technologies of Carbon Nanotube and Graphene Membranes 791
26.3.1 Technology of Carbon Nanotube Membranes 791
26.3.1.1 Fabrication and Pore Size 791
26.3.1.2 Dialysis 793
26.3.1.3 Reverse Osmosis 794
26.3.1.4 Nanofiltration 795
26.3.1.5 Ultrafiltration 797
26.3.1.6 Microfiltration 797
26.3.1.7 Gas Permeation 798
26.3.1.8 Pervaporation 799
26.3.1.9 Forward Osmosis 800
26.3.1.10 Membrane Distillation 801
26.3.1.11 Membrane Reactor and Membrane Contactor 802
26.3.2 Technologies of Graphene Membranes 803
26.3.2.1 Dialysis 803
26.3.2.2 Reverse Osmosis 803
26.3.2.3 Nanofiltration 804
26.3.2.4 Ultrafiltration 805
26.3.2.5 Microfiltration 806
26.3.2.6 Gas Permeation 807
26.3.2.7 Pervaporation 808
26.3.2.8 Forward Osmosis 809
26.3.2.9 Membrane Distillation 810
26.3.3 Comparison of Carbon Nanotubes and Graphene Membranes 810
26.3.4 Hybrids of Carbon Nanotubes and Graphene Membranes 812
References 813
Chapter 27 Conclusions and Prospects for the Future 822
Reference 824
Index 826
Supplemental Images 854
EULA 858

Erscheint lt. Verlag 10.2.2017
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Schlagworte chemical engineering • Chemische Verfahrenstechnik • Controlled release pharmaceuticals • Dünne Schichten, Oberflächen u. Grenzflächen • Dialysis • Dünne Schichten, Oberflächen u. Grenzflächen • Filtration • Materials Science • Materialwissenschaften • Membrane Fuel Cells • Membrane Reactors • Membranes • Permeation • Polymer Science & Technology • Polymerwissenschaft u. -technologie • Reverse OSmosis • Separation processes • Thin Films, Surfaces & Interfaces
ISBN-10 1-118-93257-9 / 1118932579
ISBN-13 978-1-118-93257-5 / 9781118932575
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95