Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Efficiency of Biomass Energy (eBook)

An Exergy Approach to Biofuels, Power, and Biorefineries
eBook Download: PDF
2016
John Wiley & Sons (Verlag)
978-1-119-11815-2 (ISBN)

Lese- und Medienproben

Efficiency of Biomass Energy - Krzysztof J. Ptasinski
Systemvoraussetzungen
171,99 inkl. MwSt
(CHF 167,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Details energy and exergy efficiencies of all major aspects of bioenergy systems

  • Covers all major bioenergy processes starting from photosynthesis and cultivation of biomass feedstocks and ending with final bioenergy products, like power, biofuels, and chemicals
  • Each chapter includes historical developments, chemistry, major technologies, applications as well as energy, environmental and economic aspects in order to serve as an introduction to biomass and bioenergy
  • A separate chapter introduces a beginner in easy accessible way to exergy analysis and the similarities and differences between energy and exergy efficiencies are underlined
  • Includes case studies and illustrative examples of 1st, 2nd, and 3rd generation biofuels production, power and heat generation (thermal plants, fuel cells, boilers), and biorefineries 
  • Traditional fossil fuels-based technologies are also described in order to compare with the corresponding bioenergy systems 


Krzysztof J. Ptasinski, Ph.D., D.Sc., has over 40 years of experience in academic teaching and research in chemical engineering and energy technology. He has held appointments at the Eindhoven University of Technology and the University of Twente (the Netherlands) as well as the Warsaw University of Technology and as visiting professor at the Silesian University of Technology (Poland). His pioneering research on application of exergy analysis to biomass and bioenergy is internationally acclaimed. He is the author and co-author of more than 200 publications, including 19 book chapters and 75 research papers. Currently he serves as an Executive Editor Biomass and Bioenergy - Energy, The International Journal.
Details energy and exergy efficiencies of all major aspects of bioenergy systems Covers all major bioenergy processes starting from photosynthesis and cultivation of biomass feedstocks and ending with final bioenergy products, like power, biofuels, and chemicals Each chapter includes historical developments, chemistry, major technologies, applications as well as energy, environmental and economic aspects in order to serve as an introduction to biomass and bioenergy A separate chapter introduces a beginner in easy accessible way to exergy analysis and the similarities and differences between energy and exergy efficiencies are underlined Includes case studies and illustrative examples of 1st, 2nd, and 3rd generation biofuels production, power and heat generation (thermal plants, fuel cells, boilers), and biorefineries Traditional fossil fuels-based technologies are also described in order to compare with the corresponding bioenergy systems

Krzysztof J. Ptasinski, Ph.D., D.Sc., has over 40 years of experience in academic teaching and research in chemical engineering and energy technology. He has held appointments at the Eindhoven University of Technology and the University of Twente (the Netherlands) as well as the Warsaw University of Technology and as visiting professor at the Silesian University of Technology (Poland). His pioneering research on application of exergy analysis to biomass and bioenergy is internationally acclaimed. He is the author and co-author of more than 200 publications, including 19 book chapters and 75 research papers. Currently he serves as an Executive Editor Biomass and Bioenergy - Energy, The International Journal.

Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries 1
Contents 7
Preface 17
Acknowledgments 21
About the Author 23
Part I: Background and Outline 25
Chapter 1: Bioenergy Systems: An Overview 27
1.1 Energy and the Environment 27
1.1.1 Global Energy Consumption 27
1.1.2 Conversion and Utilization of Energy 31
1.1.3 Fossil Fuel Resources 32
1.1.4 Environmental Impact of Fossil Fuels Use 33
1.1.5 Renewable Energy 35
1.2 Biomass as a Renewable Energy Source 37
1.2.1 Introduction 37
1.2.2 Historical Development and Potential of Bioenergy 38
1.2.3 Biomass Resources 40
1.2.4 Biomass Properties 41
1.2.5 Environmental Impact of Bioenergy 43
1.2.6 Economics of Bioenergy 45
1.3 Biomass Conversion Processes 46
1.3.1 Introduction 46
1.3.2 Upgrading Technologies 47
1.3.3 Thermochemical Conversion Processes 48
1.3.4 Biochemical Conversion Processes 49
1.3.5 Chemical Conversion Processes 50
1.4 Utilization of Biomass 51
1.4.1 Introduction 51
1.4.2 Biofuels 53
1.4.3 Electric Power Generation 55
1.4.4 Heat Production 56
1.4.5 Chemical Biorefinery 57
1.5 Closing Remarks 58
References 58
Chapter 2: Exergy Analysis 61
2.1 Sustainability and Efficiency 61
2.1.1 Sustainable Development 61
2.1.2 Sustainability Methods and Metrics 63
2.1.3 Thermodynamic Approach to Sustainability and Efficiency 64
2.2 Thermodynamic Analysis of Processes 66
2.2.1 Introduction 66
2.2.2 Mass and Energy Rate Balances for a Steady Flow Process - the First Law of Thermodynamics 66
2.2.3 Quality of Energy and Materials 67
2.2.4 Entropy and the Second Law of Thermodynamics 69
2.2.5 Entropy Production 71
2.2.6 Entropy Rate Balance for a Steady Flow Process 74
2.2.7 Maximum Work Obtainable from a Steady Flow Process 75
2.3 Exergy Concept 76
2.3.1 Defining Exergy 76
2.3.2 Exergy Reference Environment 78
2.3.3 Exergy versus Energy 79
2.3.4 Exergy of Work and Heat Transfer 80
2.3.5 Exergy of a Stream of Matter 83
2.3.6 Physical Exergy 84
2.3.7 Chemical Exergy 86
2.4 Exergetic Evaluation of Processes and Technologies 91
2.4.1 Exergy Rate Balance for a Steady Flow Process 91
2.4.2 Internal and External Exergy Losses 92
2.4.3 Exergetic Efficiency 93
2.4.4 Cumulative Exergy Consumption 98
2.4.5 Improvement of Exergetic Performance 100
2.4.6 Economic and Ecological Aspects of Exergy 102
2.5 Renewability of Biofuels 105
2.5.1 Introduction 105
2.5.2 Application of Cumulative Exergy Consumption for Biofuels Production 105
2.5.3 Renewability Indicators 108
2.6 Closing Remarks 110
References 110
Part II: Biomass Production and Conversion 115
Chapter 3: Photosynthesis 117
3.1 Photosynthesis: An Overview 117
3.1.1 Introduction 117
3.1.2 Basic Concepts of Photosynthesis 118
3.1.3 Light Reactions for the Photochemical Oxidation of Water 119
3.1.4 Dark Reactions for the Synthesis of Sugars 120
3.1.5 Historical Discovery 121
3.1.6 Efficiency of Photosynthesis 122
3.2 Exergy of Thermal Radiation 123
3.2.1 Introduction 123
3.2.2 Radiation of Determined Surface (the Leaf) 124
3.2.3 Energy of Solar Radiation 125
3.2.4 Entropy of Solar Radiation 127
3.2.5 Exergy of Solar Radiation 128
3.2.6 Maximum Theoretical Exergetic Efficiency of Photosynthesis 129
3.3 Exergy Analysis of Photosynthesis 130
3.3.1 Model and Mass Balance of Photosynthesis for a Leaf Surface 130
3.3.2 Energy Balance of Photosynthesis 133
3.3.3 Exergy Balance of Photosynthesis 136
3.3.4 Relative Exergy Losses in Subprocesses of Photosynthesis 137
3.3.5 Other Exergy Studies on Photosynthesis 140
3.4 Global Photosynthesis 140
3.4.1 Distribution of Exergy Flows above the Earth's Surface 140
3.4.2 Global Biomass Production 143
3.5 Closing Remarks 144
References 144
Chapter 4: Biomass Production 147
4.1 Overview 147
4.1.1 Introduction 147
4.1.2 Natural Factors 148
4.1.3 Biomass Yield 150
4.1.4 Fossil Inputs for Biomass Cultivation and Harvesting 151
4.1.5 Biomass Logistics 154
4.1.6 Environmental Impacts of Biomass Cultivation 155
4.1.7 Economics of Biomass Production 156
4.2 Efficiency of Solar Energy Capture 157
4.2.1 Major Terrestrial Biomass Crops 157
4.2.2 Aquatic Biomass 161
4.3 Fossil Inputs for Biomass Cultivation and Harvesting 164
4.3.1 Major Terrestrial Biomass Crops 164
4.3.2 Tropical Tree Plantations 167
4.3.3 Aquatic Biomass 169
4.4 Fossil Inputs for Biomass Logistics 170
4.4.1 Major Terrestrial Biomass Crops 170
4.4.2 Aquatic Biomass 172
4.5 Closing Remarks 174
References 174
Chapter 5: Thermochemical Conversion: Gasification 177
5.1 Gasification: An Overview 177
5.1.1 Introduction 177
5.1.2 Historical Development of Gasification 178
5.1.3 Principle of Biomass Gasification 178
5.1.4 Gasification Technology 180
5.1.5 Biomass Gasification Models 184
5.1.6 Gasification Products 188
5.1.7 Application of Biomass Gasification 190
5.2 Gasification of Carbon 195
5.2.1 Introduction 195
5.2.2 Gasification of Solid Carbon with Air 197
5.2.3 Gasification of Solid Carbon with Oxygen 200
5.2.4 Gasification Using Steam/Oxygen Mixtures 203
5.3 Gasification of Biomass 207
5.3.1 Introduction 207
5.3.2 Exergetic Efficiency of Gasification with Air 208
5.3.3 Exergetic Efficiency of Gasification with Steam and Steam/Air Mixtures 212
5.4 Gasification of Typical Fuels 215
5.4.1 Comparison of Gasification Efficiency of Biomass and Coal 215
5.4.2 Other Comparative Studies on Exergetic Efficiency 221
5.5 Closing Remarks 222
References 222
Chapter 6: Gasification: Parametric Studies and Gasification Systems 227
6.1 Effect of Fuel Chemical Composition on Gasification Performance 227
6.1.1 Biomass versus Coal Gasification 227
6.1.2 Gasifier Fuel Properties 228
6.1.3 Gasification Temperatures and Equivalence Ratio 230
6.1.4 Gasification Efficiencies 231
6.1.5 Exergy Losses 233
6.1.6 Concluding Remarks 235
6.2 Effect of Biomass Moisture Content, Gasification Pressure, and Heat Addition on Gasification Performance 235
6.2.1 Introduction 235
6.2.2 Effect of Biomass Moisture Content 236
6.2.3 Effect of Gasification Pressure 238
6.2.4 Effect of External Heat Addition 239
6.3 Improvement of Gasification Exergetic Efficiency 239
6.3.1 Biomass Torrefaction 240
6.3.2 Predrying of Biomass 247
6.3.3 Preheating of Gasification Air 250
6.4 Gasification Efficiency Using Equilibrium Versus Nonequilibrium Models 254
6.4.1 Quasi-Equilibrium Thermodynamic Models 255
6.4.2 Comparison of Gasification Efficiency 255
6.5 Performance of Typical Gasifiers 257
6.5.1 Comparison of FICFB and Viking Gasifiers 257
6.5.2 Fluidized-Bed Gasifiers for the Production of H2-Rich Syngas 262
6.5.3 Downdraft Fixed-Bed Gasifier 265
6.5.4 Updraft Fixed-Bed Gasifier 266
6.6 Plasma Gasification 268
6.6.1 Plasma Gasification Technology 268
6.6.2 Plasma Gasification of Sewage Sludge 268
6.7 Thermochemical Conversion in Sub- and Supercritical Water 270
6.7.1 Conversion of Wet Biomass in Hot Compressed Water 270
6.7.2 Supercritical Water Gasification (SCWG) 271
6.7.3 Hydrothermal Upgrading (HTU) under Subcritical Water Conditions 275
6.8 Closing Remarks 277
References 277
Part III: Biofuels 283
First-Generation Biofuels 283
Chapter 7: Biodiesel 285
7.1 Biodiesel: An Overview 285
7.1.1 Introduction 285
7.1.2 Historical Development 286
7.1.3 Chemistry 287
7.1.4 Feedstocks 289
7.1.5 Production Process 290
7.1.6 Biodiesel as Transport Fuel 292
7.1.7 Energy, Environmental, and Economic Performance 293
7.2 Biodiesel from Plant Oils 296
7.2.1 Exergy Analysis of Transesterification 296
7.2.2 Exergy Analysis of Overall Production Chain 299
7.3 Biodiesel from Used Cooking Oil 302
7.3.1 Exergy Analysis of Biodiesel Production 302
7.3.2 Exergy Analysis of Overall Production Chain 305
7.4 Biodiesel from Microalgae 305
7.4.1 Introduction 305
7.4.2 Exergy Analysis of Transesterification of Algal Oil 306
7.4.3 Exergy Analysis of Overall Production Chain of Algal Biodiesel 308
7.5 Closing Remarks 310
References 310
Chapter 8: Bioethanol 313
8.1 Bioethanol: An Overview 313
8.1.1 Introduction 313
8.1.2 Historical Development 314
8.1.3 Ethanol as Transport Fuel 315
8.1.4 Chemistry 317
8.1.5 Bioethanol Production Methods 319
8.1.6 Energy, Environmental and Economic Aspects 326
8.2 Exergy Analysis of Ethanol from Sugar Crops 329
8.2.1 Introduction 329
8.2.2 Ethanol from Sugarcane 330
8.2.3 Exergetic Performance of Sugarcane Ethanol Plants for Various Cogeneration Configurations 334
8.2.4 Ethanol from Sugar Beets 337
8.2.5 Renewability of Ethanol from Sugar Crops 339
8.3 Exergy Analysis of Ethanol from Starchy Crops 341
8.3.1 Introduction 341
8.3.2 Corn Ethanol: Exergy Analysis 341
8.3.3 Corn Ethanol: Cumulative Exergy Consumption (CExC) and Renewability 343
8.3.4 Wheat Ethanol 346
8.4 Exergy Analysis of Lignocellulosic Ethanol (Second Generation) 347
8.4.1 Introduction 347
8.4.2 Ethanol from Wood (NREL Process) 348
8.4.3 Impact of Biomass Pretreatment and Process Configuration 352
8.4.4 Comparison of Exergetic Efficiency 354
8.4.5 Renewability of Lignocellulosic Ethanol from Tropical Tree Plantations 355
8.5 Alternative Ethanol Processes 356
8.5.1 Fossil Ethanol from Mineral Oil 356
8.5.2 Ethanol via Water Electrolysis 357
8.6 Closing Remarks 358
References 358
Second-Generation Liquid Biofuels 363
Chapter 9: Fischer-Tropsch Fuels 365
9.1 Fischer-Tropsch Synthesis: An Overview 365
9.1.1 Introduction 365
9.1.2 Historical Development 366
9.1.3 Process Chemistry 367
9.1.4 Comparison of F-T Fuels to Conventional Transport Fuels 369
9.1.5 Process Design 370
9.1.6 Process Performance 372
9.2 Exergy Analysis of Coal-to-Liquid (CTL) Process 375
9.2.1 Description of CTL Process 375
9.2.2 Mass Balance and Energy Analysis 377
9.2.3 Exergy Analysis 378
9.3 Exergy Analysis of Gas-to-Liquid (GTL) Processes 379
9.3.1 GTL Process with Tail Gas Recycling: Internal and External 380
9.3.2 Impact of Reformer Temperature on GTL Efficiency: External Tail Gas Recycling 385
9.4 Exergy Analysis of Biomass-to-Liquid (BTL) Processes 389
9.4.1 Introduction 389
9.4.2 Once-Through F-T Process 390
9.4.3 Impact of Biomass Feedstock on Process Efficiency 397
9.4.4 Reforming and Recycling of F-T Reactor Tail Gas 401
9.4.5 Recycling of F-T Reactor Tail Gas to Biomass Gasifier 406
9.5 Closing Remarks 407
References 407
Chapter 10: Methanol 411
10.1 Methanol: An Overview 411
10.1.1 Introduction 411
10.1.2 Historical Development 412
10.1.3 Chemistry 413
10.1.4 Methanol as Transport Fuel 414
10.1.5 Process Design 416
10.1.6 Process Performance 417
10.2 Methanol from Fossil Fuels 420
10.2.1 Methanol from Natural Gas 420
10.2.2 Methanol from Coal 424
10.3 Methanol from Biomass 429
10.3.1 Methanol from Waste Biomass (Sewage Sludge) 429
10.3.2 Other Biomass-Based Methanol Processes 437
10.4 Closing Remarks 438
References 439
Chapter 11: Thermochemical Ethanol 443
11.1 Thermochemical Ethanol: An Overview 443
11.1.1 Introduction 443
11.1.2 Process Chemistry 444
11.1.3 Catalysts for Ethanol Synthesis 446
11.1.4 Process Design 447
11.1.5 Energy, Environmental and Economic Aspects 450
11.2 Exergy Analysis 451
11.2.1 Process Description 452
11.2.2 Mass and Energy Balances (Rh-Based Catalyst) 455
11.2.3 Exergy Analysis (Rh-Based Catalyst) 457
11.2.4 Impact of Ethanol Synthesis Catalyst (MoS2-Based Target Catalyst) 459
11.2.5 Impact of Gasification Temperature 462
11.3 Closing Remarks 463
References 464
Second-Generation Gaseous Biofuels 467
Chapter 12: Dimethyl Ether (DME) 469
12.1 Dimethyl Ether: An Overview 469
12.1.1 Introduction 469
12.1.2 Historical Development 470
12.1.3 Process Chemistry 471
12.1.4 DME as Energy Carrier 472
12.1.5 Production Technology 473
12.1.6 Energy, Environmental, and Economic Aspects 475
12.2 Dimethyl Ether from Fossil Fuels 476
12.2.1 DME from Natural Gas 476
12.2.2 DME from Coal 482
12.2.3 DME from Co-Feed of Natural Gas and Coal 486
12.3 Dimethyl Ether from Biomass 486
12.3.1 DME via Indirect Steam Gasification 486
12.3.2 Influence of Syngas Preparation Method on Process Efficiency 492
12.4 Closing Remarks 496
References 496
Chapter 13: Hydrogen 499
13.1 Hydrogen: An Overview 499
13.1.1 Introduction 499
13.1.2 History: From Discovery to Hydrogen Economy 500
13.1.3 Chemistry of Hydrogen Production 501
13.1.4 Hydrogen Use 503
13.1.5 Hydrogen Storage 504
13.1.6 Production Methods 505
13.1.7 Energy, Environmental, and Economic Performance 506
13.2 Exergy Analysis of Hydrogen from Fossil Fuels 509
13.2.1 Hydrogen from Natural Gas 509
13.2.2 Comparison of Efficiency for Hydrogen-from-Natural Gas Processes 513
13.2.3 Hydrogen-from-Coal Gasification 514
13.2.4 Comparison of Efficiency for Hydrogen-from-Coal Processes 517
13.3 Exergy Analysis of Hydrogen from Water Electrolysis 518
13.3.1 Process Description 518
13.3.2 Mass and Energy Balances 519
13.3.3 Exergy Analysis 519
13.4 Exergy Analysis of Future Hydrogen Production Processes 520
13.4.1 Thermochemical Cycles 521
13.4.2 Geothermal Energy 523
13.4.3 Solar Energy 524
13.5 Exergy Analysis of Hydrogen Production from Biomass Gasification 525
13.5.1 Exergy Analysis of Hydrogen from Wood 525
13.5.2 Influence of Biomass Feedstocks on Exergetic Efficiency 530
13.5.3 Influence of Gasification System Configurations on Exergetic Efficiency 531
13.5.4 Comparison of Efficiency for Hydrogen-from-Biomass Gasification 535
13.6 Exergy Analysis of Biological Hydrogen Production 536
13.6.1 Process Description 536
13.6.2 Mass and Energy Balances 538
13.6.3 Exergy Analysis 539
13.7 Closing Remarks 541
References 541
Chapter 14: Substitute Natural Gas (SNG) 547
14.1 Substitute Natural Gas: An Overview 547
14.1.1 Introduction 547
14.1.2 Historical Development 548
14.1.3 Chemistry of Methanation 550
14.1.4 Natural Gas as Energy Carrier 551
14.1.5 SNG Production Technology 553
14.1.6 Energy, Environmental and Economic Aspects 554
14.2 SNG from Coal 557
14.2.1 Description of Coal-to-SNG Process 557
14.2.2 Process Modeling 561
14.2.3 Mass and Energy Balances 561
14.2.4 Exergy Analysis 562
14.2.5 Overview of Coal-to-SNG Processes 564
14.3 SNG from Biomass Gasification 564
14.3.1 SNG via Wood Gasification 564
14.3.2 Comparison of SNG Production from Various Biomass Feedstocks 574
14.3.3 Overview of Biomass-to-SNG Processes 579
14.4 Closing Remarks 579
References 580
Part IV: Bioenergy Systems 583
Chapter 15: Thermal Power Plants, Heat Engines, and Heat Production 585
15.1 Biomass-Based Power and Heat Generation: An Overview 585
15.1.1 Introduction 585
15.1.2 Historical Development 587
15.1.3 Technologies for Power Generation from Biomass 588
15.1.4 Biofuels in Internal Combustion Engines and Gas Turbines 591
15.1.5 Biomass Heating Systems 592
15.1.6 Performance and Cost of Power Generation Systems 593
15.1.7 Environmental Aspects 595
15.2 Biomass Combustion Power Systems 595
15.2.1 Introduction 595
15.2.2 Biomass Steam Cogeneration Plant 596
15.2.3 Externally Fired Gas Turbine-Combined Cycle 599
15.2.4 Biomass-Fired Organic Rankine Cycle (ORC) 604
15.3 Biomass Gasification Power Systems 608
15.3.1 Introduction 608
15.3.2 Biomass Integrated Gasification Gas Turbine-Combined Cycle (BIG/GT-CC) 609
15.3.3 Improving Efficiency BIG/GT-CC Plants 612
15.3.4 Biomass Integrated Gasification Internal Combustion Engine-Combined Cycle (BIG/ICE-CC) 613
15.4 Comparison of Various Biomass-Fueled Power Plants 615
15.4.1 Internally and Externally Fired Gas Turbine Simple Cogeneration Cycles 616
15.4.2 Internally and Externally Fired Gas Turbine: Simple and Combined Cycles 621
15.4.3 Comparison of Biomass Combustion and Gasification CHP Plants 626
15.5 Biomass-Fueled Internal Combustion Engines and Gas Turbines 632
15.5.1 Ethanol-Fueled Spark-Ignition Engines 633
15.5.2 Biodiesel-Fueled Compression-Ignition Engines 634
15.5.3 Biofuel-Fired Gas Turbines 636
15.6 Polygeneration of Electricity, Heat, and Chemicals 639
15.6.1 Introduction 639
15.6.2 Methanol Synthesis 639
15.6.3 Ethanol Production 645
15.7 Biomass Boilers and Heating Systems 648
15.7.1 Introduction 648
15.7.2 Biomass Boilers 649
15.7.3 Energy Utilization in Buildings 651
15.8 Closing Remarks 652
References 652
Chapter 16: Biomass-Based Fuel Cell Systems 657
16.1 Biomass-Based Fuel Cell Systems: An Overview 657
16.1.1 Introduction 657
16.1.2 Historical Development 658
16.1.3 Fuel Cell Fundamentals 659
16.1.4 Fuel Cell Types 660
16.1.5 Fuel Cell Thermodynamics 662
16.1.6 Overview of Biomass-Based Fuel Cell Configurations 664
16.1.7 Energy Efficiency, Cost, and Environmental Impact 666
16.2 Biomass Integrated Gasification-Solid Oxide Fuel Cell (BIG/SOFC) Systems 666
16.2.1 Central Power Production Using BIG/SOFC/GT Systems 667
16.2.2 Other Central Power Production Studies Using BIG/SOFC Systems 671
16.2.3 Distributed Power Production Using BIG/SOFC Systems 672
16.2.4 Integration of Supercritical Water Gasification (SCWG) with SOFC/GT Hybrid System 674
16.3 Biomass Integrated Gasification-Proton Exchange Membrane Fuel Cell (BIG/PEMFC) Systems 676
16.3.1 Distributed Combined Heat and Power Generation Based on Central Hydrogen Production 676
16.3.2 Effect of Hydrogen Quality on Efficiency of Distributed CHP Systems 683
16.4 Fuel Cell Systems Fed with Liquid Biofuels 684
16.4.1 Introduction 684
16.4.2 Maximum Electricity Obtainable from Various Fuels 685
16.4.3 Integrated Fuel Processor-Fuel Cell (FP-FC) System 687
16.4.4 Direct Liquid Fuel Cell Systems 692
16.5 Closing Remarks 693
References 693
Chapter 17: Biorefineries 697
17.1 Biorefineries: An Overview 697
17.1.1 Introduction 697
17.1.2 Historical Development 698
17.1.3 Chemical Value of Biomass 699
17.1.4 Biorefinery Systems 701
17.1.5 Biorefinery Technology 703
17.2 Comparison of Various Biomass Utilization Routes 705
17.2.1 Biomass Utilization Routes 705
17.2.2 Power Generation 706
17.2.3 Biofuels Production 707
17.2.4 Chemical Biorefinery 707
17.3 Exergy Inputs to Basic Biorefinery Steps 708
17.3.1 Biorefinery Model 708
17.3.2 Processing Simple Carbohydrates into Fermentable Sugars 710
17.3.3 Processing Complex Carbohydrates into Fermentable Sugars 710
17.3.4 Processing Fermentable Sugars into Ethanol 712
17.3.5 Processing Ethanol into Ethylene 713
17.3.6 Fatty Acids Processing 714
17.3.7 Amino Acids Processing 716
17.3.8 Lignin Processing 719
17.3.9 Ash and Residuals Processing 719
17.4 Optimal Biomass Crops as Biorefinery Feedstock 720
17.4.1 Biomass versus Petrochemical Route for the Production of Bulk Chemicals 720
17.4.2 Cumulative Fossil Fuel Consumption in the Biomass Route 721
17.4.3 Cumulative Fossil Fuel Consumption in the Petrochemical Route 722
17.4.4 Fossil Fuel Savings 723
17.4.5 Optimal Crops for Biorefineries 723
17.5 Closing Remarks 726
References 726
Postface 731
Appendix A: Conversion Factors 733
Appendix B: Constants 735
Appendix C: SI Prefixes 737
Glossary of Selected Terms 739
Notation 745
Greek Letters 746
Overlines 747
Subscripts 747
Superscripts 748
Abbreviations 748
Acknowledgments for Permission to Reproduce Copyrighted Material 753
Author Index 757
Subject Index 769
End User License Agreement 781

Erscheint lt. Verlag 30.8.2016
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte bioenergy • Biofuels • Biokraftstoff • biomass • Biomasse • Biorefinery • chemical engineering • Chemie • Chemische Verfahrenstechnik • Chemistry • Energie • Energieeffizienz • Energy • energy efficiency • Environmental Chemistry • exergy • Fuel cells • Gasification • photosynthesis • Power generation • renewable energy • thermodynamics • Umweltchemie
ISBN-10 1-119-11815-8 / 1119118158
ISBN-13 978-1-119-11815-2 / 9781119118152
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95