Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Dynamics of Coupled Structures, Volume 4 (eBook)

Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016
eBook Download: PDF
2016 | 1st ed. 2016
IX, 528 Seiten
Springer International Publishing (Verlag)
978-3-319-29763-7 (ISBN)

Lese- und Medienproben

Dynamics of Coupled Structures, Volume 4 -
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Dynamics of Coupled Structures, Volume 4. Proceedings of the 34th IMAC, A Conference and Exposition on Dynamics of Multiphysical Systems: From Active Materials to Vibroacoustics, 2016, the fourth volume of ten from the Conference brings together contributions to this important area of research and engineering. Th e collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on:

• Experimental Dynamic Substructuring

• Structural Coupling of Nonlinear Structures

• Analytical/Numerical Modeling of Joints

• Industrial Applications of Substructuring

• Source Identifi cation & Transfer Path Analysis

• Human Induced Vibrations

• Damping & Friction



Dr. Matt Allen is Assistant Professor in the Department of Engineering Physics,
University of Wisconsin, Madison; Mr. Randy Mayes is a research engineer Sandia National Laboratory, Albuquerque, NM; Prof. Dr. Daniel J. Rixen is Professor and 
Chair of the Institute of Applied Mechanics, Technische Universität München, Germany.
 

Dr. Matt Allen is Assistant Professor in the Department of Engineering Physics,University of Wisconsin, Madison; Mr. Randy Mayes is a research engineer Sandia National Laboratory, Albuquerque, NM; Prof. Dr. Daniel J. Rixen is Professor and Chair of the Institute of Applied Mechanics, Technische Universität München, Germany. 

Preface 6
Contents 8
1 Verification of Experimental Component Mode Synthesis in the Sierra Analysis Framework 11
Nomenclature 11
1.1 Introduction 11
1.2 Craig-Mayes Experimental Sub-Structuring Method 12
1.3 Interface of Experimental CMS Model to Sierra 12
1.4 Demonstration 13
1.4.1 Configuration 13
1.4.2 Results 13
1.5 Conclusions 15
References 15
2 Multi-DoF Interface Synchronization of Real-Time-Hybrid-Tests Using a Recursive-Least-Squares Adaption Law: A Numerical Evaluation 16
2.1 Introduction 16
2.2 Hybrid Testing Problem Formulation 17
2.3 Adaptive Feedforward Algorithm 19
2.4 Numerical Case Study 20
2.5 Conclusion 21
References 23
3 Controls Based Hybrid Sub-Structuring Approach to Transfer Path Analysis 24
3.1 Introduction 24
3.2 Real Time Hybrid Substructuring 25
3.3 Controls Approach to Transfer Path Hybrid Substructuring 26
3.3.1 Physical Loading Using Auto Power Spectral Densities 27
3.4 Numeric Example 28
3.5 Experimental Example 31
3.6 Conclusion 32
References 33
4 Force Identification Based on Subspace Identification Algorithms and Homotopy Method 34
4.1 Introduction 34
4.2 System Identification Based on Subspace Identification Algorithm 35
4.3 The Force Identification Model 36
4.4 Practical Application 37
4.5 Conclusions 39
References 40
5 Response DOF Selection for Mapping Experimental Normal Modes-2016 Update 41
5.1 Introduction 41
5.2 Nomenclature 42
5.3 Understanding Normal Modes 42
5.4 Model Order Reduction Strategies 43
5.4.1 Classic Guyan Reduction 43
5.4.2 Modified Guyan Reduction 44
5.4.3 General Model Order Reduction 45
5.5 Reduced Order Model Orthogonality and Residual Kinetic Energy 45
5.6 Branched Shell Illustrative Example 46
5.6.1 Model Description and Dynamic Characteristics 46
5.6.2 Allocation of instrumented DOFS (Accelerometers) 47
5.6.3 TAM Definition Using “Classical” Guyan Reduction 48
5.6.4 TAM Definition Using “Modified” Guyan Reduction 49
5.6.5 Further Reflections on “Modified” Guyan Reduction Results 51
5.7 Concluding Remarks 51
A.1 Appendix: Exploitation of Generalized Modal Data 52
References 54
6 Experimental Modal Substructuring with Nonlinear Modal Iwan Models to Capture Nonlinear Subcomponent Damping 55
6.1 Introduction 55
6.2 Theoretical Development 56
6.2.1 Iwan Joint 57
6.3 Simulated Application 58
6.3.1 Estimating Modal Iwan Models for Substructure A 58
6.3.2 Substructuring Predictions 60
6.4 Conclusions 61
References 63
7 A Modal Model to Simulate Typical Structural Dynamic Nonlinearity 64
Nomenclature 64
7.1 Introduction and Motivation 65
7.2 Experiment 66
7.2.1 Hardware Description 66
7.2.2 Test Set-Up 66
7.2.3 Preliminary Modal Results 68
7.3 Signal Processing 68
7.3.1 Modal Filtering 69
7.3.1.1 SMAC Modal Filter 69
7.3.1.2 Full Modal Filter 69
7.3.1.3 Single Modal Filter 69
7.3.1.4 Modal Filter Results and Comparison 70
7.3.2 Hilbert Transform and Band-Pass Sensitivity 70
7.4 Nonlinear Models 72
7.4.1 Modal Iwan Model 72
7.4.2 FREEVIB 74
7.4.3 Restoring Force Surface 75
7.5 Results and Observations 77
7.5.1 Simulation Results and Observations 77
7.5.2 Discussion 80
7.6 Conclusions 81
7.6.1 Nonlinear Pseudo-Modal Model Assumptions 81
7.6.2 Nonlinear Pseudo-Modal Model Testing Approach 81
7.6.3 Signal Pre-Processing with Modal Filter, Band Pass Filter and Hilbert Transform 81
7.6.4 Nonlinear Pseudo-Modal Model Forms 82
References 83
8 Optimal Replacement of Coupling DoFs in Substructure Decoupling 84
8.1 Introduction 84
8.2 Direct Decoupling Using Dual Assembly 85
8.2.1 Disconnection Force Intensities Provided by Dual Assembly 86
8.2.2 FRF and Transmissibility Indicators 87
8.2.3 Prediction of the FRF of the Unknown Subsystem 89
8.3 Test Bed 89
8.3.1 Analysis of FRF and Transmissibility Indicators 91
8.3.2 Decoupling 92
8.4 Concluding Remarks 96
References 96
9 State-Space Substructuring with Transmission Simulator 98
9.1 Introduction 98
9.2 Theory 99
9.3 Experiments and System Identification 102
9.3.1 Experimental Setup 102
9.3.2 System Identification and FE Models 103
9.3.3 Identified Models 104
9.4 Substructuring Results 106
9.5 Discussion 107
9.6 Concluding Remarks 109
References 109
10 Applying the Transmission Simulator Techniques to the Ampair 600 Wind Turbine Testbed 111
10.1 Introduction 111
10.2 Theoretical Development of the Transmission Simulator 112
10.2.1 Uncoupled Equation of Motion 112
10.2.2 Transmission Simulator Models 112
10.2.2.1 Free-Free Modal Transmission Simulator Model 113
10.2.2.2 Craig-Bampton Transmission Simulator Model 113
10.2.3 Coupling Procedures 113
10.2.3.1 Modal Constraints (MCFS) 114
10.2.3.2 MCFS for Free-Free Transmission Simulator (MCFS-FF) 114
10.2.3.3 Motion Relative to the Interface (CB-IP) 115
10.3 Modeling of the Wind Turbine Rotor Assembly 116
10.4 Numerical Study of the Hub-one-Blade System 118
10.4.1 Free-Free Modes of the Blade B? 118
10.4.2 Fixed-Free Modes of the Blade B? 119
10.4.3 Assembly of the Rotor System 119
10.5 Conclusion 121
References 121
11 Effect of Interface Substitute When Applying Frequency Based Substructuring to the Ampair 600 Wind Turbine Rotor Assembly 122
11.1 Introduction 122
11.2 Test Setup 123
11.3 Substructuring Methodology 124
11.4 Results 125
11.5 Conclusion 126
References 127
12 Improving Floor Vibration Performance Using Interstitial Columns 128
12.1 Introduction 128
12.2 Vibration Criteria 128
12.3 Case Study #1: Long Span Steel Fitness Floor 129
12.4 Case Study #2: Office to Laboratory Conversion 131
12.5 Case Study #3: Disappearing Partitions 132
12.6 Conclusions 133
References 134
13 Probabilistic Model Updating of Controller Models for Groups of People in a Standing Position 135
13.1 Introduction 135
13.2 Methodology 136
13.2.1 Structural Model (G(s)) 136
13.2.2 Human Model (H(s)) 136
13.2.3 Model Updating 137
13.3 Experimental Setup 137
13.4 Results 138
13.4.1 Parameters of the Structure 138
13.4.2 Human-Structure Interaction for a Single Human 139
13.4.3 Human-Structure Interaction for Groups of Two People 139
13.5 Conclusions 139
References 140
14 Fundamental Frequency of Lightweight Cold-Formed Steel Floor Systems 141
14.1 Introduction 141
14.2 Prediction of the Fundamental Frequency of Partially Restrained Orthotropic Plate by Rayleigh-Ritz Method 142
14.3 Equivalent Orthotropic Plate for CFS Floor Systems 144
14.3.1 Equivalent Rigidity Properties of CFS Floor Systems 144
14.3.2 Simplified Equations for Equivalent Rigidity Properties 146
14.3.3 Discussion 148
14.4 Conclusion 148
References 149
15 Fundamental Studies of AVC with Actuator Dynamics 150
15.1 Introduction 150
15.2 Ideal Direct Velocity Feedback 151
15.3 Effect of Actuators and Filters 153
15.4 Conclusions 156
References 157
16 Mitigating Existing Floor Vibration Issues in a School Renovation 158
16.1 Introduction 158
16.2 Analytical Investigation 158
16.3 Experimental Testing 159
16.4 Interpretation of Results 160
16.5 Recommendations to Mitigate Excessive Vibration Levels 164
References 165
17 Vibration Serviceability Assessment of an In-Service Pedestrian Bridge UnderHuman-Induced Excitations 166
17.1 Introduction 166
17.2 Description of Footbridge 167
17.3 Finite Element Simulation 167
17.4 Test Set-Up and Instrumentation 168
17.5 Dynamic Tests Conducted on the Footbridge 168
17.5.1 Ambient Vibration Tests 168
17.5.2 Pedestrian Interaction Tests 169
17.6 Modal Identification Using Frequency Domain Decomposition 171
17.7 Evaluation of Pedestrian Interaction Test Results 171
17.8 Conclusions 174
References 174
18 Numerical and Experimental Studies on Scale Modelsof Lightweight Building Structures 176
18.1 Introduction 176
18.2 Governing Theory 176
18.3 Scale Models of Building Structures 177
18.3.1 Example: Wooden Building Structure 178
18.4 Concluding Remarks 182
References 183
19 A Wavelet-Based Approach for Generating Individual Jumping Loads 184
19.1 Introduction 184
19.2 Jumping Load Data Collection 185
19.3 Model Parameters 186
19.3.1 Time Interval OF Jumping Cycle: Ti 187
19.3.2 Contact Ratio: ?i 187
19.4 Wavelet Analysis of Jumping Impulses 189
19.4.1 Basis of Wavelet Analysis [28, 29] 189
19.4.2 Analysis OF Jumping Impulses 190
19.5 Stochastic Jumping Load Model and Verification 191
19.5.1 The Information Database of Wavelet Analysis 191
19.5.2 Stochastic Jumping Load Model 192
19.5.3 Model Verification 192
19.6 Conclusions 193
References 195
20 A Numerical Round Robin for the Prediction of the Dynamics of Jointed Structures 197
20.1 Introduction 197
20.2 The Benchmark Model 198
20.2.1 The Finite Element Mesh 198
20.3 Nonlinear Static Analysis 199
20.4 Considered Approaches to Modelling Friction Joints 200
20.4.1 Sandia Approach 200
20.4.2 Stuttgart Approach 201
20.4.3 Imperial Approach 202
20.5 SDOF Comparison Between Nonlinear Elements 203
20.5.1 How Each Approach Calculates Damping 204
20.5.2 SDOF Comparison Results 205
20.6 Brake-Reuss Beam Nonlinear Dynamic Anlaysis 206
20.6.1 Reduced Interface Frequency Response Analysis 206
20.6.2 Full Interface Analysis 207
20.6.3 Tuning the Iwan Element Joint Model Using Amplitude-Dependent Damping 208
20.7 Conclusion 212
References 213
21 A Method to Capture Macroslip at Bolted Interfaces 214
Nomenclature 214
21.1 Introduction 214
21.2 Test Setup 215
21.3 Test Results 217
21.4 Analysis Approach 224
21.5 Analysis Results 225
21.5.1 Analysis Results, 63 G Peak Acceleration 225
21.5.2 Analysis Results, 89 G Peak Acceleration 226
21.5.3 Analysis Results, 125 G Peak Acceleration 227
21.6 Summary 228
References 230
22 A Reduced Iwan Model that Includes Pinning for Bolted Joint Mechanics 231
22.1 Introduction 231
22.2 Analytical Development 232
22.2.1 Pinning Force 232
22.2.1.1 Relation of Relative and Global Displacements for the Iwan and Pinning Forces 233
22.2.2 Four-Parameter Iwan Model Overview 233
22.2.2.1 Considerations for Cyclic Loading 236
22.2.2.2 Comparison with the Discrete Four-Parameter Iwan Model 237
22.2.3 Extension to the Five-Parameter Iwan Model 238
22.2.4 Extension to the Uniform Iwan Distribution 239
22.3 Summary 239
References 240
23 Nonlinear Vibration Phenomena in Aero-Engine Measurements 241
23.1 Introduction 241
23.2 Nonlinearity in Measured Data 242
23.3 Component Level 243
23.3.1 Sub-System Level 243
23.3.2 System Level 245
23.4 Assessment of Nonlinear Responses 248
23.5 Capability Requirements 250
23.6 Conclusions 251
References 252
24 Instantaneous Frequency and Damping from Transient Ring-Down Data 253
24.1 Introduction 253
24.2 Theoretical Development 254
24.2.1 Short Time Fourier Transform with Time Varying Window 254
24.2.2 Parameter Estimation from Ring-Down 256
24.3 Numerical Results: Multi-DOF Nonlinear Beam 257
24.3.1 Initial Conditions of NNM 257
24.3.2 Broadband Excitation 258
24.4 Experimental Results: Beam with Bolted Lap Joint 260
24.5 Conclusion 262
References 262
25 Explicit Modelling of Microslip Behaviour in Dry Friction Contact 264
25.1 Introduction 264
25.2 Friction Test Rig 265
25.3 Finite Element Modelling 265
25.4 Results 267
25.4.1 Experimental Results 267
25.4.2 Finite Element Results 268
25.4.2.1 Pressure Distribution 268
25.4.2.2 Tangential Contact Stiffness 268
25.4.2.3 Microslip 269
25.5 Conclusion 270
References 271
26 Modal Testing Through Forced Sine Vibrations of a Timber Footbridge 272
26.1 Introduction 272
26.2 Marecchia River Footbridge 273
26.3 Forced Vibration Tests 273
26.4 Frequency Response Functions (FRFs) 275
26.5 Modal Identification 276
26.6 Conclusions 279
References 279
27 Damping Characteristics of a Footbridge: Mysteries and Truths 281
27.1 Introduction 281
27.2 The Bridge 282
27.3 Experimental Modal Analysis of the Structure Under Ambient Excitation 282
27.3.1 Test Strategy 282
27.3.2 Results from Signal Processing of the Data 283
27.3.3 Dynamic Loading Tests 285
27.4 The Michael Mistler Paper 285
27.5 Damping as a Function of Frequency Resolution: EFDD 286
27.6 Damping Estimation in the Time Domain 288
27.7 Comparison of Identification Techniques for Damping Estimation 289
27.8 Summary 289
References 289
28 A Critical Analysis of Simplified Procedures for Footbridges' Serviceability Assessment 291
28.1 Introduction 291
28.2 Unrestricted Pedestrian Traffic: Approximate Evaluation of the Maximum Dynamic Response 292
28.3 Numerical Validation of the Approximate Procedures 293
28.4 Technical Considerations 295
28.5 Concluding Remarks 295
References 296
29 Human-Induced Vibrations of Footbridges: The Effect of Vertical Human-Structure Interaction 297
29.1 Introduction 297
29.2 The Moving Crowd Model 298
29.2.1 The Supporting Structure 298
29.2.2 The Pedestrians 298
29.2.3 Stiff Supporting System 299
29.2.4 Flexible Supporting System 299
29.2.5 Response Calculation 300
29.3 Crowd Flow Model 301
29.4 Impact HSI 302
29.4.1 Input Parameters 302
29.4.2 Output Quantities of Interest 302
29.4.3 Results 302
29.4.3.1 Evaluation of the Structural Response 303
29.4.3.2 Impact of HSI 303
29.5 Conclusions 304
References 304
30 Nonlinear Time-Varying Dynamic Analysis of a Multi-Mesh Spur Gear Train 306
Nomenclature 306
Subscripts 307
Superscripts 307
30.1 Introduction 307
30.2 Dynamic Model Formulation 308
30.2.1 Physical System and Dynamic Model 308
30.2.2 Period-One Dynamics 310
30.2.3 Loading Conditions and Mesh Phases 312
30.3 Results and Discussion 314
30.4 Conclusion 317
References 317
31 Energy Dissipation of a System with Foam to Metal Interfaces 319
31.1 Introduction 319
31.2 Experimental Setup 320
31.2.1 Foam Specimen Details 320
31.2.2 Solid Mass Details 321
31.2.3 Specimen Assembly 321
31.2.4 Test Specifications and Data Collection 321
31.3 Experimental Results 322
31.3.1 Effects of Amplitude of Excitation 322
31.3.2 Effects of Snugness of Fit 322
31.4 Numerical Results 326
31.4.1 Computational Model 326
31.4.2 Comparison Between Model and Experiments 327
31.5 Conclusions 327
References 328
32 Nonlinear System Identification of Mechanical Interfaces Based on Wave Scattering 329
32.1 Introduction 329
32.2 Problem Formulation 330
32.3 Nonlinear System Identification 331
32.3.1 Preloaded Clearance Interface 331
32.3.2 Frictional Interface 332
32.4 Concluding Remarks 333
References 334
33 Studies of a Geometrical Nonlinear Friction Damped System Using NNMs 336
33.1 Introduction 336
33.2 The Concept of Nonlinear Normal Modes 336
33.3 Investigation of a Frequency-Energy-Independent Geometrically Nonlinear System 337
33.3.1 Definition of the Numerical Model 337
33.3.2 Proposed Methodology 338
33.3.2.1 Finding an Isolated Resonance 339
33.3.2.2 Autonomous Decay Process with Damping Identification 339
33.3.2.3 Identification of Frequency-Independent System Configuration 340
33.4 Numerical Results 340
33.5 Conclusion 343
References 343
34 Scale-Dependent Modeling of Joint Behavior 344
34.1 Introduction 344
34.2 Constitutive Contact Laws 344
34.2.1 Rough Surface 344
34.2.2 Constitutive Contact Laws 345
34.2.2.1 Normal Behavior 346
34.2.2.2 Tangential behavior 346
34.3 Simple Joint Model 347
34.4 Parameter Identification 348
34.5 Reduced Model 348
34.6 Conclusion 349
References 350
35 Robust Occupant Detection Through Step-Induced Floor Vibration by Incorporating Structural Characteristics 352
35.1 Introduction 352
35.2 Literature Survey 353
35.3 Occupant Detection Algorithm Using Structural Characteristics 354
35.3.1 Structure Characterization 355
35.3.2 Occupant Footstep Detection 356
35.3.2.1 Event Detection 357
35.3.2.2 Event Classification on Detected Events 357
35.4 Evaluation 357
35.4.1 Description of Experiments 358
35.4.2 Results and Discussion 358
35.4.2.1 Baseline Method 359
35.4.2.2 Event Detection Module 360
35.4.2.3 Event Classification Module 360
35.5 Future Work 360
35.6 Conclusions 361
References 361
36 Assessment of Large Error Time-Differences for Localization in a Plate Simulation 363
36.1 Introduction 363
36.2 Modeling and Simulation of Source Localization 364
36.3 Results and Discussion 366
36.4 Conclusion 369
References 369
37 Gender Classification Using Under Floor Vibration Measurements 371
37.1 Introduction 371
37.2 Experimental Setup 372
37.3 Data Representation 373
37.4 Machine Learning Technique 374
37.5 Results 375
37.6 Conclusions 376
References 377
38 Human-Structure Interaction and Implications 378
Nomenclature 378
38.1 Introduction 378
38.2 Experiments 379
38.2.1 The Test Floor 379
38.2.2 Tests on the Empty Floor 379
38.2.3 Further Tests on the Floor 379
38.2.4 Results 380
38.2.5 Discussion 381
38.3 Numerical Case Study 381
38.3.1 The Interaction Model 381
38.3.2 The Load Model 381
38.3.3 Calculated Floor Response and Results 382
38.4 Conclusion and Discussion 382
References 382
39 Study of Human-Structure Dynamic Interactions 383
39.1 Introduction 383
39.2 Description of the Test Structure 384
39.3 Modal Testing 385
39.4 Vibration Tests with Human Subjects 385
39.5 Estimation of the Human Dynamic Properties 388
39.6 Verification of the Identified Human Dynamic Parameters 389
39.7 Summary and Conclusions 390
References 390
40 Characterisation of Transient Actions Induced by Spectators on Sport Stadia 392
40.1 Introduction 392
40.2 Human-Induced Vibrations on Stadia 393
40.3 Inverse Force Reconstruction from Structural Responses 393
40.4 Laboratory Testing 395
40.4.1 Experimental Testing Methodology 395
40.5 Results and Discussion 397
40.6 Conclusions 399
References 399
41 Recent Issues on Stadium Monitoring and Serviceability: A Review 401
41.1 Introduction 401
41.2 Load Modeling 402
41.3 Human Structure Interaction 403
41.4 Perception and Human Comfort 404
41.5 Conclusions 404
References 405
42 Characterising Randomness in Human Actions on Civil Engineering Structures 407
42.1 Introduction 407
42.2 Experiments on Rigid Surface 408
42.3 Data Processing 408
42.4 Randomness of Key Parameters 409
42.4.1 Walking 409
42.4.2 Jumping 409
42.5 Experiments on Lively Surface 410
42.5.1 WB Description and Test Setup 410
42.5.2 Randomness on Lively Bridge 412
42.6 Sensitivity of Vibration Response 413
42.7 Conclusions 413
References 414
43 Optimal Restraint Conditions for the SID-IIs Dummy with Different Objective Functions 415
43.1 Introduction 415
43.2 Formulation of the Optimal Problem 416
43.2.1 A Spring-Mass Model for the SID-IIs 416
43.2.2 Formulation of the Multi-Objective Optimal Restraint Problem 417
43.3 Numerical Results 419
43.3.1 Weighting Vector w==[1 0 0] 420
43.3.2 Weighting Vector w==[0 0 1] 421
43.3.3 Weighting Vector w==[0 0.5 0.5] 421
43.3.4 Maximum Compliance Margin Numerical Example 422
43.4 Discussion 423
43.5 Conclusion 426
References 427
44 A Comparison of Common Model Updating Approaches 428
44.1 Introduction 428
44.2 Common Model Updating Techniques 429
44.2.1 Model Updating Methods Using Modal Data 429
44.2.2 Model Updating Methods Using Frequency Response Data 429
44.3 Measurement 430
44.4 Modeling 430
44.5 Model Updating 430
44.6 Results 432
44.7 Conclusion 433
References 435
45 Experimental Coupling and Decoupling of Engineering StructuresUsing Frequency-Based Substructuring 436
45.1 Introduction 436
45.2 Theoretical Background 437
45.2.1 Frequency-Based Substructuring Using the Dual Formulation 437
45.2.2 Numerical Improvements of the General Methods 439
45.3 Experimental Data Analysis 440
45.3.1 Measured FRFs Analysis 441
45.3.2 Decoupling Results 442
45.3.3 Improved FRFs for Decoupling 445
45.3.3.1 Decoupling Using Synthesized Input FRFs 445
45.3.3.2 Decoupling Imposing Reciprocity on Input FRFs 446
45.3.3.3 Decoupling Imposing Synthesized FRFs with the ML-MM Method 447
45.4 Conclusions 449
References 449
46 New FRF Based Methods for Substructure Decoupling 451
46.1 Introduction 451
46.2 Theory 452
46.2.1 Formulation Using Equation (46Equ946.9) 453
46.2.2 Formulation Using Equation (46Equ1046.10) 454
46.3 Case Studies 455
46.3.1 Application of the Approaches to a Lumped Parameter System 455
46.3.2 A Comparison of the Approaches with Well-Known Existing Methods 457
46.4 Discussion and Conclusions 459
References 459
47 Experimental Determination of Frictional Interface Models 461
47.1 Introduction and Background 461
47.2 Proposed Joint Models 462
47.2.1 Coulomb Friction 462
47.2.2 Jenkins Element 462
47.2.3 Iwan Element 463
47.3 Experimentation 464
47.3.1 Impact Hammer Testing 464
47.3.1.1 Experimental Setup 464
47.3.1.2 Test Data and Preliminary Analysis 465
47.3.2 Profile Testing 465
47.3.2.1 Experimental Setup 466
47.3.2.2 Reasoning 467
47.3.2.3 Test Data 467
47.4 Joint Model Parameter Estimation 469
47.4.1 Theory and Background 470
47.4.2 Parameter Distributions 473
47.5 Plasticity Effects 474
47.6 Conclusions 476
References 478
48 Effects of Experimental Methods on the Measurements of a Nonlinear Structure 479
48.1 Introduction 479
48.2 Experimental Setups 481
48.3 Control Parameter 482
48.4 Repeatability Experiments 486
48.5 Conclusions 486
References 488
49 Stress Waves Propagating Through Bolted Joints 489
49.1 Introduction 489
49.2 Approach 490
49.3 Bolt Load 491
49.3.1 Residual Stress 492
49.4 Shock Loading 493
49.4.1 Types of Dissipative Responses 493
49.4.2 Results 493
49.5 Discussion 495
49.6 Conclusion 496
References 497
50 A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring 498
50.1 Introduction and Motivation 498
50.2 Theory 499
50.2.1 Transmission Simulator 499
50.2.2 Craig-Bampton 500
50.2.3 Craig-Mayes 501
50.2.4 Craig-Chang Reduction Method 502
50.2.5 Dual Craig-Bampton Method 503
50.3 Simple Beam System 504
50.3.1 Substructuring Example 504
50.3.2 Condition of Substructuring 505
50.4 Cylinder-Plate-Beam System 507
50.4.1 Introduce System 507
50.4.1.1 Experiment 509
50.4.1.2 Model 509
50.4.2 Predictions and Comparison with Experimental Truth Data 511
50.4.2.1 Traditional TS Method 512
50.4.2.2 Craig-Mayes Method 513
50.4.2.3 Observations and Comparison of Traditional TS Method and Craig-Mayes Method 514
50.5 Conclusions 515
References 515

Erscheint lt. Verlag 11.5.2016
Reihe/Serie Conference Proceedings of the Society for Experimental Mechanics Series
Conference Proceedings of the Society for Experimental Mechanics Series
Zusatzinfo IX, 528 p. 446 illus., 353 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Maschinenbau
Schlagworte Analytical/Numerical Modeling of Joints • Experimental Dynamic Substructuring • Experimental Studies of Joints and Joined Structures • Industrial Applications of Substructuring • reduced order models • Substructuring and the Ampair Wind Turbine Test Bed
ISBN-10 3-319-29763-5 / 3319297635
ISBN-13 978-3-319-29763-7 / 9783319297637
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Problem Solving with Python

von Rubin H. Landau; Manuel J. Páez …

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
CHF 95,70
Problem Solving with Python

von Rubin H. Landau; Manuel J. Páez …

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
CHF 95,70