Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 5 (eBook)

Compounds of Group 14 (Ge, Sn, Pb)
eBook Download: PDF
2014 | 1. Auflage
911 Seiten
Georg Thieme Verlag KG
9783131717511 (ISBN)

Lese- und Medienproben

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 5 -  Daniel Bellus,  Andrew Clark,  Iain Coldham,  Geoffrey T. Crisp,  Christopher Diaper,  Philip Eagle,  Patr
Systemvoraussetzungen
1.749,99 inkl. MwSt
(CHF 1699,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'> <HTML><HEAD> <META content='text/html; charset=unicode' http-equiv=Content-Type> <META name=GENERATOR content='MSHTML 8.00.7600.16588'></HEAD> <BODY> <P><EM>Science of Synthesis: Houben-Weyl Methods of Molecular Transformations</EM> is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.</P> <P><EM>Science of Synthesis</EM> is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.</P> <UL><LI>Contains the expertise of presently 400 leading chemists worldwide <LI>Critically evaluates the preparative applicability and significance of the synthetic methods <LI>Discusses relevant background information and provides detailed experimental procedures</LI></UL> <P>For full information on the <EM>Science of Synthesis</EM> series, visit the <A href='http://www.science-of-synthesis.com/'>Science of Synthesis Homepage</A></P></BODY></HTML>

Mark G. Moloney

Mark G. Moloney

Science of Synthesis – Volume 5: Compounds of Group 14 (Ge, Sn, Pb) 1
Title page 3
Imprint 5
Preface 6
Overview 8
Table of Contents 14
Introduction 48
5.1 Product Class 1: Germanium Compounds 50
5.1.1 Product Subclass 1: Germanium Hydrides 56
Synthesis of Product Subclass 1 56
5.1.1.1 Method 1: By Reactions of (Organogermyl)alkali Metal Compounds 56
5.1.1.1.1 Variation 1: From Tetraarylgermanes 56
5.1.1.1.2 Variation 2: From Digermanium Compounds 57
5.1.1.1.3 Variation 3: From Trialkyl- and Triarylgermanium Halides 59
5.1.1.2 Method 2: Reduction of Germanium Halides 60
5.1.1.2.1 Variation 1: Reduction with Lithium Aluminum Hydride 60
5.1.1.2.2 Variation 2: Reduction with Group 14 Hydrides 63
5.1.1.2.3 Variation 3: Substitution of Halogen with a Carbanion 63
5.1.1.3 Method 3: Substitution of Halo(organo)germanium Hydrides 64
5.1.1.3.1 Variation 1: Halogenation of Alkyl- and Arylgermanium Hydrides (Substitution of Hydrogen by Halogen) 65
5.1.1.3.2 Variation 2: Substitution of Halogen in Halo(organo)germanium Hydrides 66
Applications of Product Subclass 1 in Organic Synthesis 67
5.1.1.4 Method 4: Reduction of Organic Halides 68
5.1.1.5 Method 5: Hydrogermylation of Carbon--Carbon Multiple Bonds 69
5.1.1.6 Method 6: Reduction of Carbonyl Compounds 70
5.1.1.7 Method 7: Action of Acids and Bases 71
5.1.2 Product Subclass 2: Digermenes and Digermanes 74
Synthesis of Product Subclass 2 75
5.1.2.1 Method 1: Digermenes from Germanium(II) Complexes 75
5.1.2.2 Method 2: Digermenes by Photolysis of Trigermiranes or Bis(silyl)germanes 76
5.1.2.3 Method 3: Digermenes by Reductive Coupling of Dihalogermanes 77
5.1.2.4 Method 4: Digermanes from Halogermanes 77
5.1.3 Product Subclass 3: Metalated Germanium Compounds 80
Synthesis of Product Subclass 3 81
5.1.3.1 Method 1: Reactions of Tetravalent Germanium Compounds with Metals 81
5.1.3.2 Method 2: Metathesis 81
5.1.3.3 Method 3: Oxidative Addition 82
5.1.3.4 Method 4: From Germylenes 82
5.1.4 Product Subclass 4: Germanium Oxides, Sulfides, Selenides, and Tellurides (Double Bonded) 86
Synthesis of Product Subclass 4 87
5.1.4.1 Method 1: Chalcogenation of Germylenes 87
5.1.5 Product Subclass 5: Iminogermanes 90
Synthesis of Product Subclass 5 90
5.1.5.1 Method 1: From Germylenes 90
5.1.6 Product Subclass 6: Germenes 94
Synthesis of Product Subclass 6 94
5.1.6.1 Method 1: From Germylenes 94
5.1.7 Product Subclass 7: Germylenes 98
Synthesis of Product Subclass 7 98
5.1.7.1 Method 1: From Divalent Germanium Compounds with Organolithiums or Grignard Reagents 98
5.1.8 Product Subclass 8: Organogermanium Halides 102
Synthesis of Product Subclass 8 102
5.1.8.1 Method 1: From Germanium Halides by Substitution 102
5.1.8.2 Method 2: Methylene Insertion into the Germanium--Halogen Bond 105
5.1.8.3 Method 3: By Halogenation of Germanium Compounds 106
5.1.8.3.1 Variation 1: From Alkyl- or Arylgermanes 106
5.1.8.3.2 Variation 2: From Germyl Ethers 108
5.1.8.3.3 Variation 3: From Metallic Germanium 109
5.1.8.3.4 Variation 4: From Germanium Hydrides 110
5.1.8.4 Method 4: Comproportionation of Organogermanium Compounds and Germanium Halides 111
5.1.8.5 Method 5: Addition Reactions of Germanium Compounds 113
5.1.8.5.1 Variation 1: Addition of Germanium Hydrides to Unsaturated Compounds 113
5.1.8.5.2 Variation 2: Reactions of Germylenes 116
5.1.9 Product Subclass 9: Germanium Oxides 122
Synthesis of Product Subclass 9 122
5.1.9.1 Method 1: By Substitution 122
5.1.9.1.1 Variation 1: From Organogermanium Halides 122
5.1.9.1.2 Variation 2: From Organogermanium Oxy Compounds 123
5.1.9.2 Method 2: Insertion of Oxo Fragments into Germanium--Heteroatom Bonds 124
5.1.9.3 Method 3: Reactions of Metallogermanium Compounds 125
5.1.9.4 Method 4: Reactions of Germylenes 126
5.1.9.5 Method 5: Thermolyses 127
5.1.10 Product Subclass 10: Germanium Carboxylates, Phosphates, and Related Compounds 132
Synthesis of Product Subclass 10 132
5.1.10.1 Method 1: From Organogermanium Halides by Substitution 132
5.1.11 Product Subclass 11: Germanium Sulfides, Sulfoxides, and Related Compounds 136
Synthesis of Product Subclass 11 136
5.1.11.1 Method 1: From Germanium Halides by Substitution 136
5.1.12 Product Subclass 12: Germanium Selenides, Tellurides, and Related Compounds 140
Synthesis of Product Subclass 12 140
5.1.13 Product Subclass 13: Germylamines 144
Synthesis of Product Subclass 13 144
5.1.13.1 Method 1: Synthesis by Substitution 144
5.1.13.1.1 Variation 1: From Organogermanium Halides 144
5.1.13.1.2 Variation 2: Substitutions in Other Organogermanium Compounds 145
5.1.13.2 Method 2: From Germanium(II) Compounds by Oxidative Addition 146
5.1.14 Product Subclass 14: Germanium Phosphines, Arsines, and Stibines 148
Synthesis of Product Subclass 14 148
5.1.14.1 Method 1: From Organogermanium Halides by Substitution 148
5.1.14.2 Method 2: Substitutions in Other Organogermanium Compounds 149
5.1.15 Product Subclass 15: Germanium Cyanides 152
Synthesis of Product Subclass 15 153
5.1.16 Product Subclass 16: Acylgermanes 156
Synthesis of Product Subclass 16 156
5.1.16.1 Method 1: From Carboxylic Acid Derivatives by Substitution Using Metallogermanes 156
5.1.16.2 Method 2: From a-Hydroxyalkylgermanes by Oxidation 157
5.1.16.3 Method 3: From Germyl Enol Ethers by Hydrolysis 158
5.1.16.4 Method 4: From a,a-Diheterosubstituted Germanes by Hydrolysis 159
Applications of Product Subclass 16 in Organic Synthesis 159
5.1.17 Product Subclass 17: Imidoylgermanes (a-Iminoalkylgermanes) and a-Diazoalkylgermanes 162
Synthesis of Product Subclass 17 163
5.1.17.1 Method 1: Imidoylgermanes from Imidoyl Chlorides by Substitution 163
5.1.17.2 Method 2: a-Hydrazonoalkylgermanes from Acylgermanes by Condensation 164
5.1.17.3 Method 3: a-Diazoalkylgermanes by Substitution Using Diazoalkane Derivatives 164
5.1.17.4 Method 4: a-Diazoalkylgermanes from a-Metalated Organogermanes and Tosyl Azide (Diazo Transfer) 165
5.1.18 Product Subclass 18: a-Halo- and a-Alkoxyvinylgermanes 168
Synthesis of Product Subclass 18 170
5.1.18.1 Method 1: a-Alkoxyvinylgermanes from a-Metallovinyl Ethers by Substitution 170
5.1.18.2 Method 2: a-Halovinylgermanes from a,a-Dihaloalkylgermanes by Elimination 170
5.1.19 Product Subclass 19: a-Halo-, a-Hydroxy-, a-Alkoxy-, and a-Aminoalkylgermanes 174
Synthesis of Product Subclass 19 175
5.1.19.1 Method 1: a-Hetero and a-Haloalkylgermanes from Halogermanes by Substitution 175
5.1.19.1.1 Variation 1: Using Group 1 Organometallics 176
5.1.19.1.2 Variation 2: Using Group 12 Organometallics 176
5.1.19.2 Method 2: a-Haloalkylgermanes by Direct Halogenation 177
5.1.19.3 Method 3: a-Halo and a-Alkoxyalkylgermanes by Insertion 178
5.1.19.3.1 Variation 1: By Germylene Insertion 178
5.1.19.3.2 Variation 2: By Methylenation 178
5.1.19.4 Method 4: a-Hydroxyalkylgermanes from Aldehydes/Ketones by Addition of Metallogermanes 179
5.1.19.5 Method 5: a-Hydroxyalkylgermanes from Acylgermanes by Addition 180
5.1.20 Product Subclass 20: Alkynylgermanes 184
Synthesis of Product Subclass 20 186
5.1.20.1 Method 1: From Halogermanes by Substitution 186
5.1.20.2 Method 2: From Group 14 Metalloalkynyls by Metathesis with Halogermanes 186
Applications of Product Subclass 20 in Organic Synthesis 187
5.1.21 Product Subclass 21: Germylketenes and Germylketenimines 190
Synthesis of Product Subclass 21 191
5.1.21.1 Method 1: Germylketenes from Halogermanes by Substitution with Ynolates 191
5.1.21.2 Method 2: Germylketenes from (Alkoxyalkynyl)germanes by Thermal Decomposition 192
5.1.21.3 Method 3: Germylketenes from a-Diazo-ß-oxoalkylgermanes by Wolff Rearrangement 192
5.1.22 Product Subclass 22: Aryl- and Heteroarylgermanes 196
Synthesis of Product Subclass 22 197
5.1.22.1 Method 1: From Halogermanes by Substitution with Arylmetals 197
5.1.22.1.1 Variation 1: Using Preformed Arylmetals 198
5.1.22.1.2 Variation 2: Using Barbier-Type Reactions 199
5.1.22.2 Method 2: From Aryl Halides by Palladium(0)-Mediated Coupling with Digermanes 199
5.1.22.3 Method 3: From Aryl Halides by Insertion of Dichlorogermylene 200
5.1.22.4 Method 4: Heteroarylgermanes by Cycloaddition 201
Applications of Product Subclass 22 in Organic Synthesis 201
5.1.23 Product Subclass 23: Vinylgermanes 206
Synthesis of Product Subclass 23 207
5.1.23.1 Method 1: From Vinyllithium and Vinyl Grignard Reagents by Transmetalation with Halogermanes 207
5.1.23.2 Method 2: From ß-Heterogermanes by Elimination 208
5.1.23.2.1 Variation 1: By Addition of a-Metalated Organogermanes to Aldehydes/Ketones 208
5.1.23.2.2 Variation 2: By Wittig-Based Methods 209
5.1.23.3 Method 3: From Alkynes by Germylene Insertion 210
5.1.23.4 Method 4: From Alkynes by Hydro-, Hetero-, and Metallogermylation 210
5.1.23.4.1 Variation 1: By Hydrogermylation 211
5.1.23.4.2 Variation 2: By Palladium(0)-Mediated Germylation 212
5.1.23.4.3 Variation 3: By Metallogermylation 213
Applications of Product Subclass 23 in Organic Synthesis 214
5.1.24 Product Subclass 24: Propargyl- and Allenylgermanes 218
Synthesis of Product Subclass 24 219
5.1.24.1 Method 1: Propargyl- or Allenylgermanes by Substitution 219
5.1.24.2 Method 2: Propargyl- and Allenylgermanes from Propargyl and Allenyl Halides by Germylene Insertion 220
5.1.25 Product Subclass 25: Benzylgermanes 224
Synthesis of Product Subclass 25 225
5.1.25.1 Method 1: From Halogermanes by Substitution with Benzylmetals 225
5.1.26 Product Subclass 26: Allylgermanes 228
Synthesis of Product Subclass 26 229
5.1.26.1 Method 1: From Allyl Acetates by Substitution with Metallogermanes 229
5.1.26.2 Method 2: From Halogermanes by Substitution with Allylmetals 230
5.1.26.3 Method 3: From Allyl Halides or Dienes by Germylene Insertion 230
5.1.26.4 Method 4: From Allyl Halides by Palladium(0)-Mediated Coupling with Metallogermanes 231
Applications of Product Subclass 26 in Organic Synthesis 232
5.1.27 Product Subclass 27: Alkylgermanes 236
Synthesis of Product Subclass 27 237
5.1.27.1 Method 1: From Alkyl Halides by Substitution with Metallogermanes 237
5.1.27.2 Method 2: From Halogermanes by Substitution with Alkylmetals 237
5.1.27.3 Method 3: From Alkenes by Hydrogermylation 238
5.2 Product Class 2: Tin Compounds 242
5.2.1 Product Subclass 1: Tin Hydrides 252
Synthesis of Product Subclass 1 254
5.2.1.1 Method 1: From Tin Halides by Reduction 254
5.2.1.1.1 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride 255
5.2.1.1.2 Variation 2: Reduction of Tin Halides with Sodium Borohydride 257
5.2.1.1.3 Variation 3: Reduction of Tin Halides with Dialkylaluminum Hydrides 258
5.2.1.2 Method 2: From Organotin Oxides, Alkoxides, and Amides by Reduction 259
5.2.1.3 Method 3: From Organostannyllithium, Sodium, Potassium, and Magnesium Compounds by Reactions with Electrophiles 260
5.2.1.4 Method 4: By Reduction of Sn--Sn Bonds 261
5.2.1.5 Method 5: By Exchange Reactions 261
Applications of Product Subclass 1 in Organic Synthesis 262
5.2.1.6 Method 6: Reduction of Carbon--Halogen, C--O, C--N, C--S, C--Se, and C--Te Bonds without Rearrangement 266
5.2.1.6.1 Variation 1: Reduction of Carbon--Halogen Bonds 267
5.2.1.6.2 Variation 2: Reduction of C--O Bonds 271
5.2.1.6.3 Variation 3: Reduction of C--N Bonds 274
5.2.1.6.4 Variation 4: Reduction of C--S, C--Se, and C--Te Bonds 276
5.2.1.7 Method 7: Elimination Reactions 278
5.2.1.8 Method 8: Addition of Triorganostannanes to C--C, C--O, C--N, and C--S Multiple Bonds 281
5.2.1.8.1 Variation 1: Addition to C--C Multiple Bonds 281
5.2.1.8.2 Variation 2: Addition to C--O Multiple Bonds 288
5.2.1.8.3 Variation 3: Addition to C--N and C--S Multiple Bonds 290
5.2.1.9 Method 9: Mediation of Intermolecular Radical Addition Reactions 291
5.2.1.10 Method 10: Mediation of Intramolecular Radical Addition Reactions 298
5.2.1.10.1 Variation 1: Radicals Generated by Homolysis of C--I, C--Br, C--Cl, C--SR, and C--SeR Bonds 301
5.2.1.10.2 Variation 2: Radicals Generated by Homolysis of N--Cl, N--O(CO)Ph, N--SPh, and N--NMe(CS)SMe Bonds 304
5.2.1.10.3 Variation 3: Intramolecular Reactions of Radicals Generated by Addition of Tin Hydrides to Unsaturated Groups 306
5.2.2 Product Subclass 2: Distannenes and Distannanes 320
Synthesis of Product Subclass 2 320
5.2.2.1 Method 1: Distannenes by Coupling of Two Stannylenes 320
5.2.2.2 Method 2: Distannanes by Dehydrogenation of Tin Hydrides 322
5.2.2.2.1 Variation 1: Catalytic or Thermal Decomposition of Tin Hydrides 323
5.2.2.2.2 Variation 2: Homolytic Abstraction of Hydrogen from Tin Hydrides 324
5.2.2.3 Method 3: Distannanes by Hydrostannolysis of Organotin Amides, Oxides, or Alkoxides 324
5.2.2.4 Method 4: Distannanes by Reaction of Organotin Halides with Metalated Organotin Compounds 326
5.2.3 Product Subclass 3: Metalated Tin Compounds 332
Synthesis of Product Subclass 3 334
5.2.3.1 Method 1: Synthesis by Deprotonation of Tin Hydrides 334
5.2.3.1.1 Variation 1: Deprotonation with Organometallic Compounds or Metal Hydrides 334
5.2.3.1.2 Variation 2: Deprotonation with Metal Amides or Metal Alkoxides 335
5.2.3.2 Method 2: Synthesis by Reductive Metalation of Distannanes 336
5.2.3.3 Method 3: Synthesis by Reaction of Distannanes with Organometallic Compounds or Metal Hydrides 337
5.2.3.4 Method 4: Synthesis by Reaction of Tin Halides with Metals 338
5.2.3.5 Method 5: Synthesis by Transmetalation 340
5.2.4 Product Subclass 4: Tin Oxides, Sulfides, Selenides, and Tellurides (Double Bonded) 346
Synthesis of Product Subclass 4 347
5.2.4.1 Method 1: Chalcogenation of Stannylenes 347
5.2.5 Product Subclass 5: Iminostannanes 350
Synthesis of Product Subclass 5 350
5.2.6 Product Subclass 6: Stannenes 354
Synthesis of Product Subclass 6 355
5.2.7 Product Subclass 7: Stannylenes 358
Synthesis of Product Subclass 7 359
5.2.7.1 Method 1: From Divalent Tin Compounds 359
5.2.7.2 Method 2: Reduction of Dihalostannanes 359
5.2.8 Product Subclass 8: Tin Halides and Organotin Halides 362
Synthesis of Product Subclass 8 362
5.2.8.1 Tin(IV) Halides by Direct Combination of Elements 362
5.2.8.1.1 Method 1: Chlorine, Bromine, and Iodine as the Halogen 362
5.2.8.2 Tin(IV) Halides by Halide Exchange 364
5.2.8.2.1 Method 1: Fluoride/Chloride Exchange 364
5.2.8.3 Organotin Halides by Direct Synthesis with Metallic Tin 365
5.2.8.3.1 Method 1: Reaction of Alkyl Halides with Metallic Tin 365
5.2.8.3.2 Method 2: Metal-Catalyzed Reaction of Alkyl Halides with Metallic Tin 366
5.2.8.3.3 Method 3: Metal-Catalyzed Reaction of Alkyl Halides with Metallic Tin in the Presence of Alcohols 366
5.2.8.3.4 Method 4: Metal--Salt-Catalyzed Reaction of Alkyl Halides with Metallic Tin 367
5.2.8.3.4.1 Variation 1: Catalysis with Copper(I) Iodide in the Presence of Hexamethylphosphoric Triamide 367
5.2.8.3.4.2 Variation 2: Catalysis with Antimony and Arsenic Halides 368
5.2.8.3.4.3 Variation 3: Catalysis with Mercury(II) Chloride in the Presence of Triethylamine 369
5.2.8.3.5 Method 5: Triethylamine/Iodine-Catalyzed Reaction of Alkyl Halides with Metallic Tin 369
5.2.8.3.6 Method 6: Phosphonium Salt Catalyzed Reaction of Alkyl Halides with Metallic Tin 370
5.2.8.4 Organotin Halides by Reactions Involving Tin(II) Halides 371
5.2.8.4.1 Method 1: Phosphonium Salt Catalyzed Reaction of Alkyl Halides with Tin(II) Halides 371
5.2.8.4.2 Method 2: Reaction of Alkyl Halides with Tin(II) Chloride in a Salt Melt 371
5.2.8.4.3 Method 3: Reaction of Tin(II) Halides with Organomercury, Organothallium, and Organolead Compounds 373
5.2.8.5 Organotin Halides by Partial Alkylation of Tin(IV) Halides 374
5.2.8.5.1 Method 1: Organotin Halides by Partial Alkylation of Tin(IV) Halides with Main Group Organometallic Reagents 374
5.2.8.5.1.1 Variation 1: Using Grignard Reagents 374
5.2.8.5.1.2 Variation 2: Using Trialkylaluminum Reagents 376
5.2.8.5.1.3 Variation 3: Using Dialkylmercury(II) Reagents 376
5.2.8.5.2 Method 2: Organotin Halides by Comproportionation 377
5.2.8.5.2.1 Variation 1: Using Tetraorganotin Reagents and Tin(IV) Halides 377
5.2.8.5.2.2 Variation 2: Using Tetraorganotin Reagents and Tin(IV) Halides in the Presence of a Catalyst 379
5.2.8.5.2.3 Variation 3: Using Tetraorganotin Reagents and Tin(IV) Halides in a Polar Medium 380
5.2.8.5.2.4 Variation 4: Using Diorganotin Dihalides and Tin(IV) Halides 380
5.2.8.5.2.5 Variation 5: Using Polymeric “Diorganostannane” Reagents and Tin(IV) Halides 381
5.2.8.5.3 Method 3: Organotin Halides by Partial Alkylation of Tin(IV) Halides with Diazoalkanes 382
5.2.8.6 Organotin Halides by Cleavage of C--Sn Bonds 382
5.2.8.6.1 Method 1: Organotin Halides by Cleavage of C--Sn Bonds with Halogens 382
5.2.8.6.2 Method 2: Organotin Halides by Cleavage of C--Sn Bonds with Hydrogen Halides 384
5.2.8.6.3 Method 3: Organotin Halides by Cleavage of C--Sn Bonds with Organotin Halides 385
5.2.8.7 Organotin Halides by Cleavage of Sn--Sn Bonds 385
5.2.8.7.1 Method 1: Cleavage of Hexaorganodistannane Reagents with Halogens 385
5.2.8.7.2 Method 2: Cleavage of Polymeric “Diorganostannane” Reagents with Halogens 386
5.2.8.7.3 Method 3: Disproportionation Between Polymeric “Diorganostannane” Reagents and Diorganotin Dihalides 386
5.2.8.8 Organotin Halides from Organotin--Oxygen Compounds 386
5.2.8.8.1 Method 1: Organotin Halides from Organo(oxo)stannols and Hydrogen Halides 387
5.2.8.8.2 Method 2: Organotin Halides from Organotin Oxides and Hydrogen Halides 387
5.2.8.8.3 Method 3: Organotin Halides from Organotin Oxides and Ammonium Halides 387
5.2.8.9 Additional Methods 388
5.2.8.9.1 Method 1: Organotin Halides by Halide Exchange 388
5.2.8.9.2 Method 2: Tin(II) Halides from Metallic Tin 389
5.2.8.9.3 Method 3: Tin(II) Halides from Tin(II) Oxide 390
5.2.8.9.4 Method 4: Tin(II) Halides by Halide Exchange 390
5.2.9 Product Subclass 9: Tin Oxides 400
Synthesis of Product Subclass 9 403
5.2.9.1 Method 1: From Organotin Oxides 403
5.2.9.1.1 Variation 1: Hexaorganodistannoxanes with Dialkyl Carbonates 403
5.2.9.1.2 Variation 2: Hexaorganodistannoxanes with Hydroxy Compounds 403
5.2.9.1.3 Variation 3: Triorganotin Alkoxides with Hydroxy Compounds 404
5.2.9.1.4 Variation 4: Dibutyltin Oxide with Hydroxy Compounds 404
5.2.9.1.5 Variation 5: Diorganotin Oxides with Diorganotin Compounds 405
Applications of Product Subclass 9 in Organic Synthesis 405
5.2.9.2 Method 2: Selective Benzylation of Carbohydrates via Organotin Alkoxides 405
5.2.9.3 Method 3: Selective Oxidation of Diols via Organotin Alkoxides 406
5.2.10 Product Subclass 10: Tin Carboxylates and Phosphates 410
Synthesis of Product Subclass 10 412
5.2.10.1 Method 1: From Organotin Halides 412
5.2.10.2 Method 2: From Organotin Oxides 412
Applications of Product Subclass 10 in Organic Synthesis 413
5.2.11 Product Subclass 11: Tin Enol Ethers 416
Synthesis of Product Subclass 11 420
5.2.11.1 Method 1: From Organotin Hydrides 420
5.2.11.2 Method 2: From Organotin Halides 421
5.2.11.3 Method 3: From Organotin Alkoxides 422
5.2.11.4 Method 4: From Organotin Oxides 422
Applications of Product Subclass 11 in Organic Synthesis 423
5.2.11.5 Method 5: 1,4-Dicarbonyl Compounds from Organotin Enolates and a-Halo Ketones 423
5.2.11.6 Method 6: 1,5-Dicarbonyl Compounds by Michael Addition of Organotin Enolates to a,ß-Unsaturated Carbonyl Compounds 423
5.2.11.7 Method 7: a-Aryl Ketones from Organotin Enolates and Aromatic Halides under Palladium Catalysis 424
5.2.11.8 Method 8: Synthesis of Substituted Pent-4-enones from Organotin Enolates and Allylic Acetates under Palladium Catalysis 425
5.2.11.9 Method 9: a-Alkyl-ß-hydroxy Ketones from Organotin Enolates and Aldehydes 425
5.2.11.9.1 Variation 1: Under Diastereoselective Conditions 426
5.2.12 Product Subclass 12: Tin Sulfides, Thioalkoxides, and Related Compounds 430
Synthesis of Product Subclass 12 434
5.2.12.1 Method 1: From Organotin Hydrides 434
5.2.12.2 Method 2: From Organotin Halides 434
5.2.12.2.1 Variation 1: With Thiols 434
5.2.12.2.2 Variation 2: With Sodium Sulfide 435
5.2.12.2.3 Variation 3: With Sodium Thiolates 435
5.2.12.3 Method 3: From Organotin Oxides 436
Applications of Product Subclass 12 in Organic Synthesis 436
5.2.12.4 Method 4: Sulfenyl Halides from Organotin Thiocarboxylates 436
5.2.12.5 Method 5: Unsymmetrical Sulfides from Organotin Thiolates and Organic Halides 437
5.2.13 Product Subclass 13: Tin Selenides and Tellurides 440
Synthesis of Product Subclass 13 442
5.2.13.1 Method 1: From Hexaorganodistannanes 442
5.2.13.2 Method 2: From Organotin Halides 442
5.2.13.2.1 Variation 1: Using Lithium Selenide 442
5.2.13.2.2 Variation 2: Using Sodium Organoselenides 443
Applications of Product Subclass 13 in Organic Synthesis 444
5.2.13.3 Method 3: Diorganoselenides from Bis(triphenylstannyl) Selenide 444
5.2.14 Product Subclass 14: Organostannylamines and Related Compounds 448
Synthesis of Product Subclass 14 451
5.2.14.1 Method 1: From Organotin Halides Using Lithium Amides 451
5.2.14.2 Method 2: From Hexaorganodistannoxanes Using Lithium Amides 452
5.2.14.3 Method 3: From Organotin Alkoxides Using Nitrogen Heterocycles 452
5.2.14.4 Method 4: From Organostannylamines 453
5.2.14.5 Method 5: From Organotin Azides by Cycloaddition 453
Applications of Product Subclass 14 in Organic Synthesis 454
5.2.15 Product Subclass 15: Organostannylphosphines 456
Synthesis of Product Subclass 15 457
5.2.15.1 Method 1: From Organotin Halides and Phospholylmetals 457
Applications of Product Subclass 15 in Organic Synthesis 458
5.2.16 Product Subclass 16: Tin Cyanides and Fulminates 460
Synthesis of Product Subclass 16 460
5.2.16.1 Method 1: Tin Cyanides from Organotin Hydrides and Isocyanides 460
5.2.16.2 Method 2: Tin Cyanides from Tetraorganotin Compounds and Cyanogen Halides 461
5.2.16.3 Method 3: Tin Cyanides by Substitution of Tin Halides 461
5.2.16.3.1 Variation 1: Using Trimethylsilyl Cyanide 461
5.2.16.3.2 Variation 2: Using Silver Cyanide 462
5.2.16.3.3 Variation 3: Using Group 1 Metal Cyanides 462
5.2.16.4 Method 4: Tin Cyanides from Tin Hydroxides Using Hydrogen Cyanide 463
5.2.16.5 Method 5: Tin Cyanides from Tin Alkoxides Using Acyl Cyanides 463
5.2.16.6 Method 6: Tin Cyanides from Stannylamines Using Hydrogen Cyanide 464
5.2.16.7 Method 7: Tin Fulminates by Substitution of Tin Halides 465
Applications of Product Subclass 16 in Organic Synthesis 465
5.2.16.8 Method 8: Cyanation of Carbonyl Compounds 465
5.2.16.9 Method 9: Cyanation of Imines 467
5.2.17 Product Subclass 17: Acylstannanes (Including S, Se, and Te Analogues) 470
Synthesis of Product Subclass 17 471
5.2.17.1 Method 1: From Organostannyllithium Species and Carbon Dioxide or Carbon Disulfide 471
5.2.17.2 Method 2: From Organostannyllithium Species and Isocyanates 472
5.2.17.3 Method 3: Acylstannanes and Stannanecarboxamides by Acylation of Organostannyllithium Species 472
5.2.17.3.1 Variation 1: Acylation Using Halocarboxamides 472
5.2.17.3.2 Variation 2: Acylation Using Acyl Halides, Esters, and Thioesters 473
5.2.17.4 Method 4: By Reaction of Organostannylmetal Species and Aldehydes with In Situ Oxidation 474
5.2.17.5 Method 5: By Reaction of Organotin Halides with Lithium Carboxamide Species 475
Applications of Product Subclass 17 in Organic Synthesis 475
5.2.17.6 Method 6: Amides by Palladium-Mediated Cross Coupling of Stannanecarboxamides with Aryl and Alkenyl Halides 475
5.2.17.7 Method 7: 1,2-Dicarbonyl Compounds by Acylation of Acylstannanes 476
5.2.18 Product Subclass 18: Imidoylstannanes, Diazoalkylstannanes, Tin Isocyanates, and Tin Isothiocyanates 480
Synthesis of Product Subclass 18 480
5.2.18.1 Method 1: Imidoylstannanes by the Reactions of Organostannyllithiums with Imidoyl Chlorides 480
5.2.18.2 Method 2: Imidoylstannanes by the Reactions of Organotin Halides with Lithiated Imines 481
5.2.18.3 Method 3: Imidoylstannanes by the Reactions of Acylstannanes with Amines 482
5.2.18.4 Method 4: Stannylated Diazoalkanes by the Reactions of Tin Halides with Lithiated Diazoalkanes 482
5.2.18.5 Method 5: Stannylated Diazoalkanes by the Reactions of Stannylamines with Diazoalkanes 483
5.2.18.6 Method 6: Tin Isocyanates and Isothiocyanates by the Substitution of Tin Halides 484
Applications of Product Subclass 18 in Organic Synthesis 485
5.2.18.7 Method 7: Imidoylstannanes as Imidoyl Anion Equivalents 485
5.2.18.7.1 Variation 1: Oxo Imines by the Acylation of Imidoylstannanes 485
5.2.19 Product Subclass 19: 1-Halo-, 1-Alkoxy-, and 1-Aminovinylstannanes 488
Synthesis of Product Subclass 19 488
5.2.19.1 Method 1: From 1-Halo-, 1-Alkoxy-, or 1-Amino Carbanions and Trialkylhalostannanes 488
5.2.19.1.1 Variation 1: Using 1-Halo-, 1-Alkoxy-, or 1-Aminovinyl Anions 489
5.2.19.1.2 Variation 2: Using 1-Halo or 1-Alkoxy Saturated Carbanions Followed by Elimination 490
5.2.19.2 Method 2: 1-Halovinylstannanes by Substitution Using Trialkylstannane Reagents 491
5.2.19.3 Method 3: 1-Halo- or 1-Alkoxyvinylstannanes by Stannylation of a 1-Halo- or 1-Alkoxyalk-1-yne 491
5.2.19.4 Method 4: 1-Alkoxyvinylstannanes from Acyl Derivatives 492
5.2.19.4.1 Variation 1: Using Enolization Followed by Palladium(0) Coupling 493
5.2.19.4.2 Variation 2: Using Enolization of an Acylstannane 494
5.2.19.4.3 Variation 3: Using Stannylation Followed by Elimination 494
Applications of Product Subclass 19 in Organic Synthesis 495
5.2.19.5 Method 5: Transmetalation of 1-Heterovinylstannanes To Give 1-Heterovinyllithiums 495
5.2.19.6 Method 6: Palladium(0)-Catalyzed Cross-Coupling Reactions of 1-Heterovinylstannanes 495
5.2.20 Product Subclass 20: 1-Halo-, 1-Hydroxy-, 1-Alkoxy-, and 1-Aminoalkylstannanes 498
Synthesis of Product Subclass 20 498
5.2.20.1 Method 1: From 1-Halo-, 1-Alkoxy-, or 1-Amino Carbanions and Trialkyl(halo)stannanes 498
5.2.20.2 Method 2: Substitution of Alkylstannanes with a Leaving Group in the a-Position 500
5.2.20.3 Method 3: Functional Group Interconversion of 1-Hydroxy- and 1-Aminoalkylstannanes 501
5.2.20.4 Method 4: 1-Hydroxyalkylstannanes by Reduction of Acylstannanes 501
5.2.20.5 Method 5: Addition to Trialkylstannane Reagents 502
5.2.20.5.1 Variation 1: Using Carbonyls or Acetals 503
5.2.20.5.2 Variation 2: Using Iminium Ions 504
Applications of Product Subclass 20 in Organic Synthesis 505
5.2.20.6 Method 6: Transmetalation of 1-Heteroalkylstannanes To Give 1-Heteroalkyllithiums 505
5.2.21 Product Subclass 21: Alkynylstannanes 510
Synthesis of Product Subclass 21 510
5.2.21.1 Method 1: From Alkynyl Anions by Reaction with Trialkyl- or Triaryltin Halides 510
5.2.21.1.1 Variation 1: Using Grignard Reagents 510
5.2.21.1.2 Variation 2: Using Organolithium Reagents 511
5.2.21.1.3 Variation 3: Using Organolithium Reagents Derived from Elimination Reactions 512
5.2.21.2 Method 2: From Terminal Alkynes by Reaction with Tin Amides and Oxides 513
5.2.21.2.1 Variation 1: Using Trialkyltin Amides 514
5.2.21.2.2 Variation 2: Using Trialkyltin Oxides or Bis(trialkyltin) Oxides 515
5.2.21.3 Method 3: From Silylalkynes by Reaction with Bis(trialkyltin) Oxides and Fluoride Anion 515
5.2.21.4 Methods 4: Additional Methods 516
Applications of Product Subclass 21 in Organic Synthesis 516
5.2.21.5 Method 5: Metal--Tin Exchange of Alkynylstannanes 517
5.2.21.6 Method 6: Electrophilic Substitution of Alkynylstannanes 518
5.2.21.7 Method 7: Metal-Catalyzed Couplings of Alkynylstannanes 520
5.2.22 Product Subclass 22: Ketenylstannanes and Derivatives 526
Synthesis of Product Subclass 22 527
5.2.22.1 Method 1: From Alkynolates and Trialkyltin Halides 527
5.2.22.2 Method 2: From the Thermal Decomposition of Alkoxyethynylstannanes 528
5.2.22.3 Method 3: Additional Methods 528
Applications of Product Subclass 22 in Organic Synthesis 529
5.2.22.4 Method 4: Reaction with Nucleophiles 529
5.2.23 Product Subclass 23: Allenylstannanes 532
Synthesis of Product Subclass 23 533
5.2.23.1 Method 1: From Allenyl Anions by Reaction with Trialkyl- or Triaryltin Halides 533
5.2.23.1.1 Variation 1: Using Propargyl Bromide and Zinc 533
5.2.23.1.2 Variation 2: Using Grignard Reagents 534
5.2.23.1.3 Variation 3: Using Organolithium Reagents 534
5.2.23.2 Method 2: From Propargyl Compounds by SN2' Displacement 535
5.2.23.2.1 Variation 1: Using Stannylcuprates 536
5.2.23.2.2 Variation 2: Using Magnesium and Lead(II) Bromide 537
5.2.23.3 Method 3: From Chromium Carbenes by Hydrostannylation 538
5.2.23.4 Method 4: From the Rearrangement of Propargylstannanes 538
5.2.23.5 Methods 5: Additional Methods 539
Applications of Product Subclass 23 in Organic Synthesis 539
5.2.23.6 Method 6: Substitution with Electrophiles 539
5.2.23.7 Method 7: Lewis Acid Catalyzed Additions to Electrophiles 540
5.2.23.8 Method 8: Transmetalation with Organolithium Reagents 542
5.2.24 Product Subclass 24: Arylstannanes 546
Synthesis of Product Subclass 24 546
5.2.24.1 Method 1: From Aryl Anions by Reaction with Trialkyl- or Triaryltin Halides 546
5.2.24.1.1 Variation 1: Using a Preformed Grignard Reagent 547
5.2.24.1.2 Variation 2: Using a Grignard Reagent Formed In Situ (Barbier Conditions) 547
5.2.24.1.3 Variation 3: Using Anions of Aryllithiums Formed by Directed Lithiations 548
5.2.24.1.4 Variation 4: Using Anions of Aryllithiums Formed from Aryl Halides 550
5.2.24.2 Method 2: From Aryl Sulfones by Reaction with Trialkyltin Hydrides 550
5.2.24.3 Method 3: From Palladium-Catalyzed Coupling of an Aryl Halide or Trifluoromethanesulfonate with a Hexaalkyldistannane 551
5.2.24.4 Method 4: From an Aryl Halide by Nucleophilic Aromatic Substitution with Trialkyl- or Triaryltin Anions 552
5.2.24.5 Method 5: From Cycloaddition Reactions of Alkynylstannanes 553
5.2.24.5.1 Variation 1: Using [4 + 2] Cycloadditions of Alkynylstannanes 554
5.2.24.5.2 Variation 2: Using Metal-Mediated Cycloadditions of Alkynylstannanes 556
5.2.24.5.3 Variation 3: Using 1,3-Cycloadditions of Alkynylstannanes 557
5.2.24.6 Methods 6: Additional Methods 557
Applications of Product Subclass 24 in Organic Synthesis 558
5.2.24.7 Method 7: Metal--Tin Exchange of Aryl- and Heteroarylstannanes 558
5.2.24.8 Method 8: Electrophilic Substitution of Aryl- and Heteroarylstannanes 560
5.2.24.8.1 Variation 1: Protiodestannylation 560
5.2.24.8.2 Variation 2: Halodestannylation 561
5.2.24.8.3 Variation 3: Using Other Electrophiles 562
5.2.25 Product Subclass 25: Alk-1-enylstannanes 568
Synthesis of Product Subclass 25 568
5.2.25.1 Method 1: From Alkenyl Anions by Reaction with Trialkyl- or Triaryltin Halides 568
5.2.25.1.1 Variation 1: Using Preformed Grignard Reagents 569
5.2.25.1.2 Variation 2: Using Anions of Alkenyllithiums Formed from Directed Lithiation 570
5.2.25.1.3 Variation 3: Using Anions of Alkenyllithiums Formed from Alkenyl Halides 571
5.2.25.1.4 Variation 4: Using Other Alkenyl Anions 571
5.2.25.2 Method 2: From the Palladium-Catalyzed Coupling of Alkenyl Electrophiles with Distannanes 573
5.2.25.3 Method 3: From Alkenyl Sulfones by Reaction with Trialkyltin Hydrides 574
5.2.25.4 Method 4: From Alkenylsilanes and Fluoride Ion 574
5.2.25.5 Method 5: From the Hydrostannylation of an Alkyne 575
5.2.25.5.1 Variation 1: By Radical Addition of a Trialkyltin Hydride 576
5.2.25.5.2 Variation 2: By Metal-Catalyzed Addition of a Trialkyltin Hydride 576
5.2.25.6 Method 6: From the Addition of Trialkyltin Metals Across an Alkyne 578
5.2.25.6.1 Variation 1: Using Stannylcuprates 578
5.2.25.6.2 Variation 2: Using Distannanes 579
5.2.25.6.3 Variation 3: Using Borylstannanes 580
5.2.25.7 Method 7: From Aldehydes using Chromium(II) Halides 581
5.2.25.8 Method 8: From the Hydrostannylation of an Allene 582
5.2.25.9 Method 9: From the [4+2] Cycloaddition of Alkynylstannanes to Dienes 583
5.2.25.10 Method 10: From Other Stannanes 583
5.2.25.11 Methods 11: Additional Methods 586
Applications of Product Subclass 25 in Organic Synthesis 586
5.2.25.12 Method 12: Metal--Tin Exchange of Alkenylstannanes 587
5.2.25.13 Method 13: Electrophilic Substitution of Alkenylstannanes 588
5.2.25.13.1 Variation 1: Protiodestannylation 588
5.2.25.13.2 Variation 2: Halodestannylation 589
5.2.25.13.3 Variation 3: Using Other Electrophiles 591
5.2.26 Product Subclass 26: Propargylstannanes 596
Synthesis of Product Subclass 26 596
5.2.26.1 Method 1: From Propargyl Grignard Reagents and Tin Halides 596
5.2.26.2 Method 2: Transmetalations of Intermediate Allenylmetal Species 597
5.2.26.2.1 Variation 1: Kinetic Stannylation of Lithium Reagents 597
5.2.26.2.2 Variation 2: From Allenyltitanium Species 598
5.2.26.3 Method 3: From Propargylic Substrates and Stannylmetal Species 599
5.2.26.3.1 Variation 1: With Stannyllithium Species 599
5.2.26.3.2 Variation 2: With Stannylcopper(I) Species 600
5.2.26.4 Methods 4: Additional Methods 601
Applications of Product Subclass 26 in Organic Synthesis 602
5.2.26.5 Method 5: Allenylation and/or Propargylation Reactions 602
5.2.26.5.1 Variation 1: Addition to Carbon Electrophiles 602
5.2.27 Product Subclass 27: Benzylstannanes 606
Synthesis of Product Subclass 27 606
5.2.27.1 Method 1: From Trialkylstannyllithiums 606
5.2.27.2 Method 2: From Organomagnesium Derivatives and Organotin Halides 607
5.2.27.2.1 Variation 1: From Benzyl Halides by Barbier Reactions 607
5.2.27.2.2 Variation 2: Sonication-Promoted Barbier Reactions 607
5.2.27.3 Method 3: From Organozinc Derivatives and Organotin Halides 608
5.2.27.3.1 Variation 1: Zinc and/or Copper Mediated Synthesis 608
5.2.27.3.2 Variation 2: From Benzylic Zinc/Copper Halides 609
5.2.27.4 Method 4: From Benzyl Anions and Organotin Halides 611
5.2.27.4.1 Variation 1: From Cresols, by Formation of the Dianion Followed by Stannylation 611
5.2.27.4.2 Variation 2: By Stannylation of Methylquinolines 611
5.2.27.4.3 Variation 3: Stannylation of Terpenes 612
5.2.27.5 Method 5: Synthesis From Tetraalkylammonium Salts 613
5.2.27.6 Method 6: Via Silicon--Tin Transmetalation 614
5.2.27.7 Method 7: Palladium-Catalyzed Hydrostannylation of Alkenes 615
Applications of Product Subclass 27 in Synthesis 615
5.2.27.8 Method 8: Preparation of 1-Benzyl-1,2-dihydroisoquinolines 615
5.2.27.9 Method 9: Synthesis of New Non-opioid Analgesics 616
5.2.28 Product Subclass 28: Allylstannanes 620
Synthesis of Product Subclass 28 620
5.2.28.1 Method 1: Synthesis via Grignards: Reaction of Organomagnesium Reagents with Trialkylhalostannanes 621
5.2.28.1.1 Variation 1: Direct Formation of the Allyl Grignard 621
5.2.28.1.2 Variation 2: Via Barbier Reaction 622
5.2.28.1.3 Variation 3: Sonication-Promoted Barbier Reactions 623
5.2.28.1.4 Variation 4: Sonication-Promoted Barbier Reactions with Hexabutyldistannoxane [Bis(tributyltin) Oxide] 623
5.2.28.2 Method 2: Allylstannanes via Trialkylstannyllithium Reagents 624
5.2.28.3 Method 3: Synthesis via Deprotonation of Alkenes 625
5.2.28.3.1 Variation 1: Allylstannanes by Deprotonation/Stannylation of Alkenes 625
5.2.28.3.2 Variation 2: Stannylation of Terpenes 626
5.2.28.4 Method 4: From Allylic Sulfur Derivatives (Sulfides, Sulfones, and Thiols) 626
5.2.28.4.1 Variation 1: From Allylic Sulfides Using Tributylstannane 626
5.2.28.4.2 Variation 2: From Allylic Sulfides Using Tributylstannyllithium 627
5.2.28.4.3 Variation 3: From Allylic Sulfones 628
5.2.28.4.4 Variation 4: From Allylic S-Substituted S-Methyl Dithiocarbonates 629
5.2.28.5 Method 5: From Allylic Acetates and Phosphates 630
5.2.28.5.1 Variation 1: Via Palladium(0) Complexes with Diethyl(tributylstannyl)aluminum 630
5.2.28.5.2 Variation 2: Via Palladium(0) Complexes, Samarium(II) Iodide, and Trialkylhalostannanes 631
5.2.28.6 Method 6: From the Hydrolysis of Boronylallylic Stannanes 632
5.2.28.7 Method 7: a-Substituted Allylstannanes by Selenoxide Elimination 633
5.2.28.8 Method 8: Synthesis via Wittig Reactions 633
5.2.28.9 Method 9: Substituted Allylic Stannanes From ß-Stannyl Enolate Esters 635
5.2.28.10 Method 10: Via Silicon--Tin Transmetalation 636
5.2.28.11 Method 11: Palladium-Catalyzed Hydrostannylation of Allenes 637
5.2.28.12 Method 12: From Allylic Alcohols 638
5.2.28.13 Methods 13: Additional Methods 639
Applications of Product Subclass 28 in Synthesis 639
5.2.28.14 Method 14: Radical Reactions 639
5.2.28.15 Method 15: Transmetalations 641
5.2.28.16 Method 16: Cross-Coupling Reactions with Alkyl and Allyl Halides 643
5.2.29 Product Subclass 29: Alkylstannanes 654
Synthesis of Product Subclass 29 655
5.2.29.1 Method 1: From Trialkylstannyl Anions with Haloalkanes or Tosylates 655
5.2.29.2 Method 2: From Tin Metal and Haloalkanes 657
5.2.29.3 Method 3: From Alkyl Grignard Reagents and Bis(trialkyltin) Oxides 658
5.2.29.4 Method 4: From Alkylmetal Reagents and Alkylchlorostannanes 659
5.2.29.4.1 Variation 1: Using Alkylsodium Reagents and Alkylchlorostannanes 659
5.2.29.4.2 Variation 2: Using Alkyllithium Reagents and Alkylchlorostannanes 660
5.2.29.4.3 Variation 3: Using Alkylzinc Reagents and Alkylchlorostannanes 660
5.2.29.5 Method 5: From Hydrostannylation of Alkenes 661
5.2.29.5.1 Variation 1: At Atmospheric Pressure 661
5.2.29.5.2 Variation 2: Using Elevated Pressures 661
5.2.29.6 Methods 6: Additional Methods 662
Applications of Product Subclass 29 in Synthesis 662
5.2.29.7 Method 7: Transmetalation 662
5.2.29.7.1 Variation 1: With Palladium 662
5.2.29.7.2 Variation 2: Tin--Lithium Exchange 663
5.3 Product Class 3: Lead Compounds 666
5.3.1 Product Subclass 1: Lead Hydrides 674
Synthesis of Product Subclass 1 675
5.3.1.1 Method 1: From Organolead Halides by Reduction 675
5.3.1.1.1 Variation 1: Using Potassium Borohydride 675
5.3.1.1.2 Variation 2: Using Diborane 676
5.3.1.1.3 Variation 3: Using Lithium Aluminum Hydride 676
5.3.1.1.4 Variation 4: Using Diisobutylaluminum Hydride 677
5.3.1.1.5 Variation 5: Using Tributylstannane 677
5.3.1.2 Method 2: From Lead Alkoxides and Acetates by Reduction 677
5.3.1.2.1 Variation 1: Using Diborane 678
5.3.1.2.2 Variation 2: Using Triorganotin Hydrides 678
5.3.1.3 Method 3: From Lead Imidazoles by Reduction 678
Applications of Product Subclass 1 in Organic Synthesis 679
5.3.1.4 Method 4: Hydroplumbylation 679
5.3.2 Product Subclass 2: Diplumbenes and Diplumbanes 684
Synthesis of Product Subclass 2 684
5.3.2.1 Method 1: Diplumbenes from Grignard Reagents 684
5.3.3 Product Subclass 3: Metalated Lead Compounds 688
Synthesis of Product Subclass 3 688
5.3.3.1 Method 1: Reactions between Tetravalent Lead Compounds and Metals 688
5.3.3.2 Method 2: Metathesis 689
5.3.3.3 Method 3: Oxidative Addition 689
5.3.4 Product Subclass 4: Organoplumbyl, Sulfides, Selenides, and Tellurides (Double Bonded) 692
5.3.5 Product Subclass 5: Plumbylenes 696
Synthesis of Product Subclass 5 696
5.3.5.1 Method 1: From Divalent Lead Compounds 696
5.3.6 Product Subclass 6: Halo(organo)plumbanes 700
Synthesis of Product Subclass 6 700
5.3.6.1 Method 1: Reaction of Hexaorganodiplumbanes with Halide Sources 700
5.3.6.1.1 Variation 1: Reaction with Halogens 701
5.3.6.1.2 Variation 2: Reaction with Other Halide Sources 701
5.3.6.2 Method 2: Metathesis Reactions of Organoplumbanes with Halides 702
5.3.6.2.1 Variation 1: Reaction of Hexaaryldiplumboxanes with Hydrogen Halides 702
5.3.6.2.2 Variation 2: Reaction of Bis(acetoxy)diorganoplumbanes with Hydrogen Halides 703
5.3.6.3 Method 3: Reaction of Tetraorganoplumbanes with Halogens 704
5.3.6.3.1 Variation 1: Reaction with Free Halogen To Form Halotriorganoplumbanes 704
5.3.6.3.2 Variation 2: Reaction with Free Halogen To Form Dihalodiorganoplumbanes 705
5.3.6.4 Method 4: Reaction of Tetraorganoplumbanes with Hydrogen Halides 705
5.3.6.4.1 Variation 1: Reaction with Hydrogen Halides To Form Halotriorganoplumbanes 705
5.3.6.4.2 Variation 2: Reaction with Hydrogen Halides To Form Dihalodiorganoplumbanes 706
5.3.6.5 Method 5: Reaction of Tetraorganoplumbanes with Other Halide Sources 706
5.3.6.6 Method 6: Other Synthetic Methods 707
5.3.6.6.1 Variation 1: Reaction of Dinitrogen Tetroxide with Tetraorganoplumbanes 707
5.3.6.6.2 Variation 2: Reaction of Hydrogen Halides with Diethyllead Sulfite 708
Applications of Product Subclass 6 in Organic Synthesis 708
5.3.7 Product Subclass 7: Organoplumboxanes and Related Compounds 712
Synthesis of Product Subclass 7 712
5.3.7.1 Method 1: Preparation of Organoplumbanols by the Oxidation of Hexaorganodiplumbanes 712
5.3.7.2 Method 2: Organoplumbanols, Alkoxy(organo)plumbanes, and Alkyl-peroxy(organo)plumbanes from Halo(organo)plumbanes 713
5.3.7.2.1 Variation 1: Reaction of Halo(organo)plumbanes with Wet Silver(I) Oxide 714
5.3.7.2.2 Variation 2: Reaction of Halo(organo)plumbanes with Alkali Metal Alkoxides 714
5.3.7.3 Method 3: Preparation of Alkoxyplumbanes by Transalcoholysis and Dehydration Reactions 715
5.3.7.3.1 Variation 1: Reaction of Organoplumbanols with Alcohols or Phenols 715
5.3.7.3.2 Variation 2: Reaction of Alkoxy(organo)plumbanes with Alcohols or Phenols 716
5.3.7.3.3 Variation 3: Reaction of Alkoxy(organo)plumbanes with Hydrogen Peroxide 716
5.3.7.4 Method 4: Preparation of Alkoxyplumbanes from Tetraorganoplumbanes 716
Applications of Product Subclass 7 in Organic Synthesis 717
5.3.8 Product Subclass 8: Acyloxy(organo)plumbanes 720
Synthesis of Product Subclass 8 720
5.3.8.1 Method 1: Direct Plumbation of Arenes To Form Tris(acyloxy)arylplumbanes 720
5.3.8.1.1 Variation 1: Plumbation of Arenes To Form Tri(acyloxy)arylplumbanes 720
5.3.8.1.2 Variation 2: Plumbation of Arenes in the Presence of Monohaloacetic Acids Followed by Metathesis To Form Tris(acetoxy)arylplumbanes 721
5.3.8.1.3 Variation 3: Plumbation of Arenes in the Presence of Dihaloacetic Acids Followed by Metathesis To Form Tris(acetoxy)arylplumbanes 722
5.3.8.1.4 Variation 4: Plumbation of Arenes in the Presence of Trihaloacetic Acids Followed by Metathesis To Form Tris(acetoxy)arylplumbanes 722
5.3.8.2 Method 2: Tin--Lead Transmetalations To Form Tris(acetoxy)organoplumbanes 723
5.3.8.3 Method 3: Boron--Lead Transmetalations To Form Tris(acetoxy)organoplumbanes 724
5.3.8.3.1 Variation 1: Boron--Lead Transmetalations To Form Bis(acetoxy)diorganoplumbanes 725
5.3.8.4 Method 4: Mercury--Lead Transmetalations To Form Tris(acetoxy)organoplumbanes 725
Applications of Product Subclass 8 in Organic Synthesis 726
5.3.8.5 Method 5: Arylation of Phenols Using Tris(acetoxy)organoplumbanes 726
5.3.8.6 Method 6: Arylation of Dicarbonyls and Derivatives with Tris(acetoxy)organoplumbanes 727
5.3.8.6.1 Variation 1: Reaction of ß-Diketones and Derivatives with Tris(acetoxy)organoplumbanes 728
5.3.8.6.2 Variation 2: Reaction of ß-Oxo Esters with Tris(acetoxy)organoplumbanes 728
5.3.8.6.3 Variation 3: Reaction of ß-Dicarbonyl Vinylogues with Tris(acetoxy)organoplumbanes 729
5.3.8.6.4 Variation 4: Arylation of Malonic Acid Derivatives with Tris(acetoxy)organoplumbanes 730
5.3.8.6.5 Variation 5: Arylation of a-Cyano Esters and Malononitriles with Tris(acetoxy)organoplumbanes 731
5.3.8.7 Method 7: Arylation of Ketones and Derivatives with Tris(acetoxy)organoplumbanes 732
5.3.8.7.1 Variation 1: Arylation of Ketones with Tris(acetoxy)organoplumbanes 732
5.3.8.7.2 Variation 2: Arylation of Enamines with Tris(acetoxy)organoplumbanes 732
5.3.8.8 Method 8: Arylation of Nitroalkanes and Nitroacetic Acid Derivatives with Tris(acetoxy)organoplumbanes 733
5.3.8.9 Method 9: Copper-Catalyzed N-Arylation with Tris(acetoxy)organoplumbanes 734
5.3.8.9.1 Variation 1: Arylation of Azoles with Tris(acetoxy)organoplumbanes 734
5.3.9 Product Subclass 9: Plumbyl Enol Ethers 740
Synthesis of Product Subclass 9 740
5.3.9.1 Method 1: Reaction of Trimethylsilyl Enol Ethers with Tris(acetoxy)arylplumbanes 740
5.3.9.2 Method 2: Reaction of Organoplumbanes with Ketene 741
5.3.10 Product Subclass 10: Organoplumbane Sulfur Compounds 744
Synthesis of Product Subclass 10 744
5.3.10.1 Method 1: Preparation of (Organosulfanyl)plumbanes by Reaction of Hexaorganodiplumbanes with Organic Disulfides 744
5.3.10.2 Method 2: Organo(organosulfanyl)plumbanes from Halo(organo)plumbanes 745
5.3.10.2.1 Variation 1: Reaction of Halotriorganoplumbanes with Lead(II) Thiolates 745
5.3.10.2.2 Variation 2: Reaction of Halotriorganoplumbanes with Thiols 746
5.3.11 Product Subclass 11: Organoplumbyl Selenides, Tellurides, and Related Compounds 750
Synthesis of Product Subclass 11 751
5.3.11.1 Method 1: Organoplumbyl Selenides or Tellurides from [(Triorganoplumbyl)selenenyl]lithium or [(Triorganoplumbyl)tellanyl]lithium and Halotriorganoplumbanes 751
5.3.11.1.1 Variation 1: Reaction of Lithium Triorganoplumbyl Selenides or Tellurides with Halotriorganoplumbanes 751
5.3.11.1.2 Variation 2: Organoplumbyl Tellurides from [(Triorganogermyl)tellanyl]-lithium and Halotriorganoplumbanes 751
5.3.12 Product Subclass 12: Organoplumbanamines and Related Compounds 754
Synthesis of Product Subclass 12 754
5.3.12.1 Method 1: Organoplumbanamines from Halo(organo)plumbanes 754
5.3.12.2 Method 2: Organoplumbanamines from Organoplumbanols 755
5.3.12.3 Method 3: Organoplumbanamines from Tetraorganoplumbanes and N-Halogenated Organic Compounds 756
5.3.13 Product Subclass 13: Organoplumbyl Phosphines and Phosphine Oxides 758
Synthesis of Product Subclass 13 758
5.3.14 Product Subclass 14: Triorganolead Cyanides and Triorganolead Cyanates 760
Synthesis of Product Subclass 14 760
5.3.14.1 Method 1: Triorganolead Cyanides from Hexaaryldiplumbanes by Disproportionation with Cyanogen Halides 760
5.3.15 Product Subclass 15: Acylplumbanes 764
Synthesis of Product Subclass 15 765
5.3.15.1 Method 1: Acylplumbanes from (Triarylplumbyl)lithiums by Substitution with Acyl Halides or Chloroformates 765
5.3.16 Product Subclass 16: Lead Isocyanates, Isothiocyanates, Diazoplumbanes, and Iminoplumbanes 768
Synthesis of Product Subclass 16 768
5.3.16.1 Method 1: Isocyanates and Isothiocyanates from Triorganolead Derivatives by Substitution 768
5.3.16.2 Method 2: Diazomethyl(trimethyl)plumbanes from N-(Trimethylplumbyl)-N,N-bis(trimethylsilyl)amine by Reactions with Diazomethanes 769
5.3.16.3 Method 3: Plumbylimines from Triarylplumbyllithiums by Reactions with Chloroimines 769
5.3.16.4 Method 4: Iminoplumbanes from Triorganoplumbanes by Reactions with Phenyl Isocyanide 770
5.3.16.5 Method 5: Pyrazolylplumbanes from Alkynylplumbanes by 1,3-Dipolar Cycloaddition Reactions with Diazomethane 770
5.3.17 Product Subclass 17: 1- or 2-Alkoxy- and 1- or 2-(Alkylsulfanyl) and1- or 2-Aminoalkenyl(triorgano)plumbanes 774
Synthesis of Product Subclass 17 774
5.3.17.1 Method 1: 1-Alkoxy- and 1-(Alkylsulfanyl)alkenyl(triorgano)plumbanes from (Triethylplumbyl)metals by Addition to Alkynyl Ethers and Alkylsulfanylethynes 774
5.3.17.2 Method 2: 1-Alkoxymethyl-1-vinylplumbanes from Trimethyl[1-(trimethylplumbyl)vinyl]plumbanes 774
5.3.18 Product Subclass 18: 1-Halo-, 1-Alkoxy-, 1-Hydroxy-, and 1-Aminoalkylplumbanes 778
Synthesis of Product Subclass 18 778
5.3.18.1 Method 1: Perfluoroalkyltriorganoplumbanes from Triaryl- or Trialkylplumbyl Derivatives by Reactions with Bis(perfluoroalkyl)cadmium Adducts 778
5.3.18.2 Method 2: Triaryl(trihalomethyl)plumbanes from Triarylplumbyl Derivatives by Reactions with Trihaloacetyl Compounds 780
5.3.18.3 Method 3: Alkyl(perfluoroalkyl)plumbanes from Tetraalkylplumbanes by Radical Substitutions with Perfluoroalkyl Halides 781
5.3.18.4 Method 4: Perfluoroalkylplumbanes from Tetraaryl- and Tetraalkylplumbanes by Radical Exchange with Perfluoroalkylmetal Derivatives 781
5.3.18.4.1 Variation 1: From Tetraalkylplumbanes by Reactions with Perfluoroalkylmercury Compounds 781
5.3.18.4.2 Variation 2: From Tetraarylplumbanes by Reactions with Perfluoroalkylstannanes 782
5.3.18.5 Method 5: Trialkyl(trihalomethyl)- or Triaryl(halomethyl)plumbanes from Triorganolead Alkoxides and Haloforms 782
5.3.18.6 Method 6: Triaryl(trichloromethyl)plumbanes and Triaryl(dichloromethyl)plumbanes from (Triarylplumbyl)metals by Reactions with Halomethanes 783
5.3.18.7 Method 7: Triaryl(1,1-dichloroalkyl)plumbanes from [(Triaryl)(dichloro)plumbyl]methyl]lithiums by Reactions with Electrophiles 783
5.3.18.8 Method 8: Bromomethyl(triphenyl)plumbane from [(Triphenylplumbyl)methyl]lithium and 1,2-Dibromoethane 784
5.3.18.9 Method 9: (1-Haloalkyl)triorganoplumbanes from Triorganolead Halides by Reactions with (1-Haloalkyl)lithiums or the Simmons--Smith Reagent 784
5.3.18.10 Method 10: (1-Haloalkyl)plumbanes by Miscellaneous Procedures 786
5.3.18.11 Method 11: (1-Alkoxyalkyl)(trialkyl)plumbanes from (Trialkylplumbyl)lithiums and 1-Chloroalkyl Ethers 786
5.3.18.12 Method 12: (1-Alkoxyalkyl)triorganoplumbanes from Triorganolead Halides and Phenyl (Triphenylplumbyl)methyl Sulfide from Chlorotriphenylplumbane 786
Applications of Product Subclass 18 in Organic Synthesis 787
5.3.19 Product Subclass 19: Alkynylplumbanes 792
Synthesis of Product Subclass 19 792
5.3.19.1 Method 1: Alkynylplumbanes from (Trialkylplumbyl)sodiums and 1-Haloalkynes 792
5.3.19.2 Method 2: Alkynylplumbanes and Alkynyldiplumbanes from Trialkyl- and Triarylhaloplumbanes and Alkynylmetals 793
5.3.19.3 Method 3: Alkynylplumbanes or Alkynyldiplumbanes from Trialkyl- or Triarylhaloplumbanes and Alkynylsodiums 793
5.3.19.4 Method 4: Tetraalkynylplumbanes from Lead(IV) Salts and Alkynylmetals 795
5.3.19.5 Method 5: Alkynylplumbanes from Trialkyllead or Triaryllead Hydroxides, Silazides, or Alkoxides by Condensation with Alkynes 795
5.3.20 Product Subclass 20: Allenylplumbanes 798
Synthesis of Product Subclass 20 798
5.3.20.1 Method 1: Allenylplumbanes from (Triarylplumbyl)magnesium Bromide and 3-Haloalk-1-ynes 798
5.3.21 Product Subclass 21: Arylplumbanes 802
Synthesis of Product Subclass 21 802
5.3.21.1 Method 1: Trialkyl(perfluoroaryl)plumbanes from Trialkylplumbyl Halides by Reactions with Bromo(fluoro)arenes and Triaminophosphines 802
5.3.21.2 Method 2: Triaryl(perfluoroaryl)plumbanes from Triaryllead (Perfluoroaryl)carboxylates by Decarboxylation 803
5.3.21.3 Method 3: Tetraarylplumbanes from Hexaaryldiplumbanes by Disproportionation 803
5.3.21.4 Method 4: Trialkyl(aryl)plumbanes from (Trialkylplumbyl)sodiums by Reaction with Aryl Halides 804
5.3.21.5 Method 5: Nonsymmetrical Tetraarylplumbanes from Triaryllead Halides by Reactions with Arylmetals 804
5.3.21.6 Method 6: Alkyl(aryl)plumbanes from Alkyllead Halides by Reactions with Arylmetals 805
5.3.21.7 Method 7: Arylalkylplumbanes from Lead Salts by Reactions with Arylmetals and Alkyl Halides 806
5.3.21.8 Method 8: Symmetrical Tetraarylplumbanes from Lead Salts by Reactions with Aryltrifluorosilanes 807
5.3.21.9 Method 9: Symmetrical Tetraarylplumbanes from Lead Salts by Reactions with Arylmetals and Aryl Halides 807
5.3.22 Product Subclass 22: Vinylplumbanes 810
Synthesis of Product Subclass 22 810
5.3.22.1 Method 1: Tetravinylplumbanes from Lead Chlorides or Metal Hexachloroplumbates by Reactions with Vinylmagnesium Halides 810
5.3.22.2 Method 2: Vinylplumbanes from Trialkyl- or Triarylplumbylmetals by Reactions with Haloalkenes 811
5.3.22.3 Method 3: Vinylplumbanes from Alkyl- or Aryllead Halides and Vinylmetals 812
5.3.22.4 Method 4: Alkyl(trivinyl)plumbanes from Lead(II) Chloride by Reactions with Vinylmagnesium Halides and Haloalkanes 812
5.3.22.5 Method 5: Vinylplumbanes from Trialkyllead Salts and Alkynes 813
5.3.22.6 Method 6: [(1-Hydroxyalkyl)vinyl]plumbanes from [1-(Triorgano-plumbyl)ethenyl]lithiums and Carbonyl Compounds 814
5.3.23 Product Subclass 23: Benzylplumbanes 816
Synthesis of Product Subclass 23 816
5.3.23.1 Method 1: Benzylplumbanes from (Triorganoplumbyl)metals and Benzyl Halides 816
5.3.23.2 Method 2: Benzylplumbanes from Halotriorganoplumbanes and Benzylmetals 817
5.3.23.3 Method 3: Tetrabenzylplumbanes from Lead(II) Chloride and Benzylmagnesium Halides 818
5.3.24 Product Subclass 24: Allylplumbanes 820
Synthesis of Product Subclass 24 820
5.3.24.1 Method 1: Allyl(triorgano)plumbanes from Grignard and Analogous Reagents 820
5.3.24.1.1 Variation 1: From (Triorganoplumbyl)metals and Allyl Halides 820
5.3.24.1.2 Variation 2: From Triorganolead Halides or Hydroxides by Reactions with Allylmagnesium Halides 821
5.3.24.1.3 Variation 3: From Lead(II) Chloride, Grignard Reagents, and Allyl Halides 822
5.3.25 Product Subclass 25: Alkylplumbanes 826
Synthesis of Product Subclass 25 826
5.3.25.1 Method 1: Nonsymmetrical Tetraalkylplumbanes and Alkyl(aryl)-plumbanes from (Triorganoplumbyl)metals and Electrophiles 826
5.3.25.2 Method 2: Nonsymmetrical Tetraalkylplumbanes and Alkyl(aryl)-plumbanes from Organolead Halides and Metal Alkyls 827
5.3.25.3 Method 3: Alkyl(triaryl)plumbanes from [(Triarylplumbyl)methyl]lithiumsand Electrophiles 828
5.3.25.4 Method 4: Alkylplumbanes from Lead Salts and Metal Alkyls 828
5.3.25.4.1 Variation 1: From Alkali Metal Alkylboronates and Aluminates 829
5.3.25.4.2 Variation 2: From Lead Dihalides, Metal Alkyls, and Alkyl Halides 829
5.3.25.5 Method 5: Tetraalkylplumbanes from Lead, Alkyl Halides, and Reducing Agents 830
5.3.25.6 Method 6: Synthesis of Tetraalkylplumbanes by Electrolysis 831
5.3.25.6.1 Variation 1: From Metal Tetraalkylborates or Tetraalkylaluminates 831
5.3.25.6.2 Variation 2: Electrolysis of Alkylmagnesium Halides 832
5.3.25.6.3 Variation 3: Electrolysis of Alkyl Halides at a Zinc Cathode and a Lead Anode 833
5.3.25.6.4 Variation 4: Electrolysis of Alkyl Halides at a Lead Cathode 834
5.3.25.7 Method 7: Tetraalkylplumbanes from Hexaalkyldiplumbanes 834
5.3.25.8 Method 8: Nonsymmetrical Tetraalkylplumbanes from Symmetrical Tetraalkylplumbanes by Radical Redistribution 835
5.3.25.9 Method 9: Tetraalkylplumbanes by Miscellaneous Routes 835
Applications of Product Subclass 25 in Organic Synthesis 836
5.3.25.10 Method 10: Application of Tetraalkylplumbanes in the Alkylation of Aldehydes 836
Keyword Index 840
Author Index 870
Abbreviations 906

Erscheint lt. Verlag 14.5.2014
Reihe/Serie Science of Synthesis
Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • Germanium • lead • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Organometallic Chemistry • organometallic compound • ORGANOMETALLIC COMPOUN D • organometallic reactions • Organometallic Synthesis • organometallic transformation • Peptide synthesis • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • synthetic applications • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • TIN
ISBN-13 9783131717511 / 9783131717511
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich