Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Riemannian Geometry

Buch | Softcover
XI, 248 Seiten
1987 | Softcover reprint of the original 1st ed. 1987
Springer Berlin (Verlag)
978-3-540-17923-8 (ISBN)

Lese- und Medienproben

Riemannian Geometry - Sylvestre Gallot, Dominique Hulin, Jacques LaFontaine
CHF 119,75 inkl. MwSt
  • Lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Traditional point of view: pinched manifolds 147 Almost flat pinching 148 Coarse point of view: compactness theorems of Gromov and Cheeger 149 K. CURVATURE AND REPRESENTATIONS OF THE ORTHOGONAL GROUP Decomposition of the space of curvature tensors 150 Conformally flat manifolds 153 The second Bianchi identity 154 CHAPITRE IV : ANALYSIS ON MANIFOLDS AND THE RICCI CURVATURE A. MANIFOLDS WITH BOUNDARY Definition 155 The Stokes theorem and integration by parts 156 B. BISHOP'S INEQUALITY REVISITED 159 Some commutations formulas Laplacian of the distance function 160 Another proof of Bishop's inequality 161 The Heintze-Karcher inequality 162 C. DIFFERENTIAL FORMS AND COHOMOLOGY The de Rham complex 164 Differential operators and their formal adjoints 165 The Hodge-de Rham theorem 167 A second visit to the Bochner method 168 D. BASIC SPECTRAL GEOMETRY 170 The Laplace operator and the wave equation Statement of the basic results on the spectrum 172 E. SOME EXAMPLES OF SPECTRA 172 Introduction The spectrum of flat tori 174 175 Spectrum of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop's inequality and coarse estimates 181 Some consequences of Bishop's theorem 182 Lower bounds for the first eigenvalue 184 CHAPTER V : RIEMANNIAN SUBMANIFOLDS A. CURVATURE OF SUBMANIFOLDS Introduction 185 Second fundamental form 185 Curvature of hypersurfaces 187 Application to explicit computations of curvature 189 B. CURVATURE AND CONVEXITY 192 The Hadamard theorem C.

I: Differential Manifolds.- A. from Submanifolds to Abstract Manifolds.- Submanifolds of Rn+k.- Abstract manifolds.- Smooth maps.- B. Tangent Bundle.- Tangent space to a submanifold of Rn+k.- The manifold of tangent vectors.- Vector bundles.- Differential map.- C. Vector Fields:.- Definitions.- Another definition for the tangent space.- Integral curves and flow of a vector field.- Image of a vector field under a diffeomorphism.- D. Baby lie Groups.- Definitions.- Adjoint representation.- E. Covering maps and Fibrations.- Covering maps and quotient by a discrete group.- Submersions and fibrations.- Homogeneous spaces.- F. Tensors.- Tensor product (digest).- Tensor bundles.- Operations on tensors.- Lie derivatives.- Local operators, differential operators.- A characterization for tensors.- G. Exterior forms.- Definitions.- Exterior derivative.- Volume forms.- Integration on an oriented manifold.- Haar measure on a Lie group.- H. Appendix: Partitions of Unity.- II: Riemannian Metrics.- A. Existence Theorems and first Examples.- Definitions.- First examples.- Examples: Riemannian submanifolds, product Riemannian manifolds.- Riemannian covering maps, flat tori.- Riemannian submersions, complex projective space.- Homogeneous Riemannian spaces.- B. Covariant Derivative.- Connexions.- Canonical connexion of a Riemannian submanifold.- Extension of the covariant derivative to tensors.- Covariant derivative along a curve.- Parallel transport.- Examples.- C. Geodesics.- Definitions.- Local existence and uniqueness for geodesics, exponential map.- Riemannian manifolds as metric spaces.- Complete Riemannian manifolds, Hopf-Rinow’s theorem.- Geodesics and submersions, geodesies of PnC.- Cut locus.- III: Curvature.- A. the Curvature Tensor.- Second covariant derivative.- Algebraic properties of the curvature tensor.- Computation of curvature: some examples.- Ricci curvature, scalar curvature.- B. first Second Variation of arc-Length and Energy.- Technical preliminaries: vector fields along parameterized submanifolds.- First variation formula.- Second variation formula.- C. Jacobi Vector Fields.- Basic topics about second derivatives.- Index form.- Jacobi fields and exponential map.- Applications: Sn, Hn, PnR, 2-dimensional manifolds.- D. Riemannian Submersions and Curvature.- Riemannian submersions and connexions.- Jacobi fields of PnC.- O’Neill’s formula.- Curvature and length of small circles. Application to Riemannian submersions.- E. The Behavior of Length and Energy in the Neighborhood of a Geodesic.- The Gauss lemma.- Conjugate points.- Some properties of the cut-locus.- F. Manifolds with Constant Sectional Curvature.- Spheres, Euclidean and hyperbolic spaces.- G. Topology and Curvature.- The Myers and Cartan theorems.- H. Curvature and Volume.- Densities on a differential manifold.- Canonical measure of a Riemannian manifold.- Examples: spheres, hyperbolic spaces, complex projective spaces.- Small balls and scalar curvature.- Volume estimates.- I. Curvature and Growth of the Fundamental Group.- Growth of finite type groups.- Growth of the fundamental group of compact manifolds with negative curvature.- J. Curvature and Topology.- Traditional point of view: pinched manifolds.- Almost flat pinching.- Coarse point of view: compactness theorems of Gromov and Cheeger.- K. Curvature and Representations of the Orthogonal Group.- Decomposition of the space of curvature tensors.- Conformally flat manifolds.- The second Bianchi identity.- Chapitre IV: Analysis on Manifolds and the Ricci Curvature.- A. Manifolds with Boundary.- Definition.- The Stokes theorem and integration by parts.- B. Bishop’s Inequality Revisited.- Some commutations formulas.- Laplacian of the distance function.- Another proof of Bishop’s inequality.- The Heintze-Karcher inequality.- C. Differential forms and Cohomology.- The de Rham complex.- Differential operators and their formal adjoints.- The Hodge-de Rham theorem.- A second visit to the Bochner method.- D. Basic Spectral Geometry.- The Laplace operator and the wave equation.- Statement of the basic results on the spectrum.- E. Some Examples of Spectra.- The spectrum of flat tori.- Spectrum of (Sn, can).- F. The Minimax Principle.- The basic statements.- V. Riemannian Submanifolds.

Erscheint lt. Verlag 20.8.1987
Reihe/Serie Universitext
Zusatzinfo XI, 248 p.
Verlagsort Berlin
Sprache englisch
Maße 170 x 244 mm
Gewicht 464 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Schlagworte covariant derivative • Curvature • manifold • Relativity • Riemannian Geometry • Riemannian goemetry
ISBN-10 3-540-17923-2 / 3540179232
ISBN-13 978-3-540-17923-8 / 9783540179238
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Mathematik 2; Print inkl. eLehrmittel

von Benno Jakob; Hans Marthaler; Katharina Schudel

Buch | Softcover (2020)
hep verlag
CHF 58,00