Supernova Cosmology for the 21st Century
How I Learnt to Stop Worrying About Likelihoods and Train a Neural Network
Seiten
2026
Springer International Publishing (Hersteller)
9783032150721 (ISBN)
Springer International Publishing (Hersteller)
9783032150721 (ISBN)
- Noch nicht erschienen - erscheint am 16.02.2026
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
This thesis breaks new ground in supernova type Ia cosmology, developing novel and powerful machine-learning methods scalable to the next generation of astronomical surveys. It demonstrates the feasibility of a fully simulation-based approach to inference, which overcomes the limitations of current methods while increasing the efficiency (and speed) of cosmological inference by orders of magnitude from upcoming large samples of objects. Combining advances in machine learning, numerical modelling, and physical insight, this work provides a much-needed bridge between cosmology and data science. On top of its exceptional methodological impact, the thesis itself is an outstanding product: it is written to the highest scientific and editorial standard, with exceptional quality of figures and graphs, and demonstrating superb command of statistics, machine learning, astrophysics, and cosmology. It is a precious resource for anybody interested in learning, in a concise and accessible yet rigorous manner, the state-of-the-art in supernova type Ia cosmology and modern inference methodologies in general.
| Erscheint lt. Verlag | 16.2.2026 |
|---|---|
| Reihe/Serie | Physics and Astronomy |
| Physics and Astronomy (R0) | Springer Theses |
| Vorwort | Roberto Trotta |
| Zusatzinfo | XII, 199 p. 50 illus., 44 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| Mathematik / Informatik ► Mathematik ► Statistik | |
| Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
| Schlagworte | Bayesian hierarchical modelling • Bayesian inference • Bayesian model comparison • Cosmology • machine learning • neural network • neural ratio estimation • SBI • Simulation-based inference • SN Ia • standard candle • Type Ia supernova |
| ISBN-13 | 9783032150721 / 9783032150721 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Online Resource (2025)
Pearson Education Limited (Hersteller)
CHF 84,50