Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Supernova Cosmology for the 21st Century - Konstantin Karchev

Supernova Cosmology for the 21st Century

How I Learnt to Stop Worrying About Likelihoods and Train a Neural Network
Online Resource
XII, 199 Seiten
2026
Springer International Publishing (Hersteller)
9783032150721 (ISBN)
CHF 224,65 inkl. MwSt
  • Noch nicht erschienen - erscheint am 16.02.2026
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This thesis breaks new ground in supernova type Ia cosmology, developing novel and powerful machine-learning methods scalable to the next generation of astronomical surveys. It demonstrates the feasibility of a fully simulation-based approach to inference, which overcomes the limitations of current methods while increasing the efficiency (and speed) of cosmological inference by orders of magnitude from upcoming large samples of objects. Combining advances in machine learning, numerical modelling, and physical insight, this work provides a much-needed bridge between cosmology and data science. On top of its exceptional methodological impact, the thesis itself is an outstanding product: it is written to the highest scientific and editorial standard, with exceptional quality of figures and graphs, and demonstrating superb command of statistics, machine learning, astrophysics, and cosmology. It is a precious resource for anybody interested in learning, in a concise and accessible yet rigorous manner, the state-of-the-art in supernova type Ia cosmology and modern inference methodologies in general.
Erscheint lt. Verlag 16.2.2026
Reihe/Serie Physics and Astronomy
Physics and Astronomy (R0)
Springer Theses
Vorwort Roberto Trotta
Zusatzinfo XII, 199 p. 50 illus., 44 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Schlagworte Bayesian hierarchical modelling • Bayesian inference • Bayesian model comparison • Cosmology • machine learning • neural network • neural ratio estimation • SBI • Simulation-based inference • SN Ia • standard candle • Type Ia supernova
ISBN-13 9783032150721 / 9783032150721
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich