Supernova Cosmology for the 21st Century
Springer International Publishing (Verlag)
978-3-032-15071-4 (ISBN)
- Noch nicht erschienen - erscheint am 27.01.2026
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Konstantin Karchev obtained a Bachelor's degree in Bath, UK and a Master's in gravitation and astroparticle physics at the University of Amsterdam before pursuing a doctoral degree at SISSA, Trieste under the supervision of prof. Roberto Trotta on the development of cutting-edge machine-learning methods for supernova cosmology. He has also authored several open-source scientific packages and contributed to research in strong gravitational lensing and the study of exoplanets, addressing the challenges of big and detailed astronomical data sets. Finally, Konstantin has been involved in several outreach and teaching activities, and shows a strong affinity for scientific visualisation and graphical design.
Preface.- Bayesian inference.- Neural simulation-based inference.- Neural simulation-based model selection.- Developments in hierarchical SBI.- Supernova cosmology for philosophers.- Supernova cosmology for Nobel laureates. - Supernova cosmology for data scientists.- Supernova cosmology for statisticians.- Clipppy: probabilistic programming.- torch: accelerating physics.- SLiCsim: light curves for the ML era.- SIDE-real.- SimSIMS.- SICRET.- RESSET.- CIGaRS.- Epilogue.- Appendices: Simulation-based hierarchical truncated inference.
| Erscheint lt. Verlag | 17.4.2026 |
|---|---|
| Reihe/Serie | Springer Theses |
| Vorwort | Roberto Trotta |
| Zusatzinfo | XII, 199 p. 50 illus., 44 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 210 x 279 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| Mathematik / Informatik ► Mathematik ► Statistik | |
| Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
| Schlagworte | Bayesian hierarchical modelling • Bayesian inference • Bayesian model comparison • Cosmology • machine learning • neural network • neural ratio estimation • SBI • Simulation-based inference • SN Ia • standard candle • Type Ia supernova |
| ISBN-10 | 3-032-15071-X / 303215071X |
| ISBN-13 | 978-3-032-15071-4 / 9783032150714 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich