Lectures On The Geometry Of Manifolds (2nd Edition)
Seiten
2007
|
2nd Revised edition
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-277-862-8 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-277-862-8 (ISBN)
Introduces the reader to some of the most frequently used techniques in global geometry. Useful to the graduate student willing to specialize in this field, this book helps in learning the sciences examples that are of more use than precepts.
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that “in learning the sciences examples are of more use than precepts”. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a “global and analytical bias”. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that “in learning the sciences examples are of more use than precepts”. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a “global and analytical bias”. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.
Manifolds; Natural Constructions on Manifolds; Calculus on Manifolds; Riemannian Geometry; Elements of the Calculus of Variations; The Fundamental Group and Covering Spaces; Cohomology; Characteristic Classes; Classical Integral Geometry Elliptic Equations on Manifolds; Dirac Operators.
| Verlagsort | Singapore |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 981-277-862-4 / 9812778624 |
| ISBN-13 | 978-981-277-862-8 / 9789812778628 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Mathematische Zusammenhänge und ihre Anschauung - in der Ebene, im …
Buch | Hardcover (2025)
Springer (Verlag)
CHF 62,95