Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Generative AI Security (eBook)

Defense, Threats, and Vulnerabilities
eBook Download: PDF
2025
495 Seiten
Wiley-IEEE Press (Verlag)
978-1-394-36851-8 (ISBN)

Lese- und Medienproben

Generative AI Security - Shaila Rana, Rhonda Chicone
Systemvoraussetzungen
120,99 inkl. MwSt
(CHF 118,20)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Up-to-date reference enabling readers to address the full spectrum of AI security challenges while maintaining model utility

Generative AI Security: Defense, Threats, and Vulnerabilities delivers a technical framework for securing generative AI systems, building on established standards while focusing specifically on emerging threats to large language models and other generative AI systems. Moving beyond treating AI security as a dual-use technology, this book provides detailed technical analysis of three critical dimensions: implementing AI-powered security tools, defending against AI-enhanced attacks, and protecting AI systems from compromise through attacks like prompt injection, model poisoning, and data extraction.

The book provides concrete technical implementations supported by real-world case studies of actual AI system compromises, examining documented cases like the DeepSeek breaches, Llama vulnerabilities, and Google's CaMeL security defenses to demonstrate attack methodologies and defense strategies while emphasizing foundational security principles that remain relevant despite technological shifts. Each chapter progresses from theoretical foundations to practical applications.

The book also includes an implementation guide and hands-on exercises focusing on specific vulnerabilities in generative AI architectures, security control implementation, and compliance frameworks.

Generative AI Security: Defense, Threats, and Vulnerabilities discusses topics including:

  • Machine learning fundamentals, including supervised, unsupervised, and reinforcement learning and feature engineering and selection
  • Intelligent Security Information and Event Management (SIEM), covering AI-enhanced log analysis, predictive vulnerability assessment, and automated patch generation
  • Deepfakes and synthetic media, covering image and video manipulation, voice cloning, audio deepfakes, and AI's greater impact on information integrity
  • Security attacks on generative AI, including jailbreaking, adversarial, backdoor, and data poisoning attacks
  • Privacy-preserving AI techniques including federated learning and homomorphic encryption

Generative AI Security: Defense, Threats, and Vulnerabilities is an essential resource for cybersecurity professionals and architects, engineers, IT professionals, and organization leaders seeking integrated strategies that address the full spectrum of Generative AI security challenges while maintaining model utility.

Shaila Rana, PhD, is a professor of Cybersecurity, co-founder of the ACT Research Institute, a cybersecurity, AI, and technology think tank, and serves as the Chair of the IEEE Standards Association initiative on Zero Trust Cybersecurity for Health Technology, Tools, Services, and Devices.

Rhonda Chicone, PhD, is a retired professor and the co-founder of the ACT Research Institute. A former CSO, CTO, and Director of Software Development, she brings decades of experience in software product development and cybersecurity.


Up-to-date reference enabling readers to address the full spectrum of AI security challenges while maintaining model utility Generative AI Security: Defense, Threats, and Vulnerabilities delivers a technical framework for securing generative AI systems, building on established standards while focusing specifically on emerging threats to large language models and other generative AI systems. Moving beyond treating AI security as a dual-use technology, this book provides detailed technical analysis of three critical dimensions: implementing AI-powered security tools, defending against AI-enhanced attacks, and protecting AI systems from compromise through attacks like prompt injection, model poisoning, and data extraction. The book provides concrete technical implementations supported by real-world case studies of actual AI system compromises, examining documented cases like the DeepSeek breaches, Llama vulnerabilities, and Google s CaMeL security defenses to demonstrate attack methodologies and defense strategies while emphasizing foundational security principles that remain relevant despite technological shifts. Each chapter progresses from theoretical foundations to practical applications. The book also includes an implementation guide and hands-on exercises focusing on specific vulnerabilities in generative AI architectures, security control implementation, and compliance frameworks. Generative AI Security: Defense, Threats, and Vulnerabilities discusses topics including: Machine learning fundamentals, including supervised, unsupervised, and reinforcement learning and feature engineering and selection Intelligent Security Information and Event Management (SIEM), covering AI-enhanced log analysis, predictive vulnerability assessment, and automated patch generation Deepfakes and synthetic media, covering image and video manipulation, voice cloning, audio deepfakes, and AI s greater impact on information integrity Security attacks on generative AI, including jailbreaking, adversarial, backdoor, and data poisoning attacks Privacy-preserving AI techniques including federated learning and homomorphic encryption Generative AI Security: Defense, Threats, and Vulnerabilities is an essential resource for cybersecurity professionals and architects, engineers, IT professionals, and organization leaders seeking integrated strategies that address the full spectrum of Generative AI security challenges while maintaining model utility.
Erscheint lt. Verlag 30.10.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Schlagworte AI-Powered Attacks • AI Security • cybersecurity • gai • generative AI • generative artificial intelligence • Intelligent Security Information and Event Management • LLM security • Machine Learning Attacks • Machine Learning Security
ISBN-10 1-394-36851-8 / 1394368518
ISBN-13 978-1-394-36851-8 / 9781394368518
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Design scalable and high-performance Java applications with Spring

von Wanderson Xesquevixos

eBook Download (2025)
Packt Publishing (Verlag)
CHF 31,65
The expert's guide to building secure, scalable, and reliable …

von Alexander Shuiskov

eBook Download (2025)
Packt Publishing (Verlag)
CHF 31,65