Topics in Number Theory
Seiten
2026
Cambridge University Press (Verlag)
978-1-009-72058-8 (ISBN)
Cambridge University Press (Verlag)
978-1-009-72058-8 (ISBN)
- Noch nicht erschienen (ca. Mai 2026)
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
This introductory overview of number theory covers all the essential topics and techniques. The first chapters, accessible to undergraduates, assume only basic abstract algebra, while later parts require graduate-level algebra and complex analysis. Ideal for mathematics students interested in number theory, it balances accessibility with depth.
Spanning elementary, algebraic, and analytic approaches, this book provides an introductory overview of essential themes in number theory. Designed for mathematics students, it progresses from undergraduate-accessible material requiring only basic abstract algebra to graduate-level topics demanding familiarity with algebra and complex analysis. The first part covers classical themes: congruences, quadratic reciprocity, partitions, cryptographic applications, and continued fractions with connections to quadratic Diophantine equations. The second part introduces key algebraic tools, including Noetherian and Dedekind rings, then develops the finiteness of class groups in number fields and the analytic class number formula. It also examines quadratic fields and binary quadratic forms, presenting reduction theory for both definite and indefinite cases. The final section focuses on analytic methods: L-series, primes in arithmetic progressions, and the Riemann zeta function. It addresses the Prime Number Theorem and explicit formulas of von Mangoldt and Riemann, equipping students with foundational knowledge across number theory's major branches.
Spanning elementary, algebraic, and analytic approaches, this book provides an introductory overview of essential themes in number theory. Designed for mathematics students, it progresses from undergraduate-accessible material requiring only basic abstract algebra to graduate-level topics demanding familiarity with algebra and complex analysis. The first part covers classical themes: congruences, quadratic reciprocity, partitions, cryptographic applications, and continued fractions with connections to quadratic Diophantine equations. The second part introduces key algebraic tools, including Noetherian and Dedekind rings, then develops the finiteness of class groups in number fields and the analytic class number formula. It also examines quadratic fields and binary quadratic forms, presenting reduction theory for both definite and indefinite cases. The final section focuses on analytic methods: L-series, primes in arithmetic progressions, and the Riemann zeta function. It addresses the Prime Number Theorem and explicit formulas of von Mangoldt and Riemann, equipping students with foundational knowledge across number theory's major branches.
Jorge Morales is Emeritus Professor of Mathematics at Louisiana State University. He is the author of numerous research papers in algebra and number theory.
Preface; Part I. Elementary Methods: 1. Congruences and primes; 2. Continued fractions; 3. Euclidean and principal ideal domains; Part II. Algebraic Methods: 4. Some commutative algebra; 5. Integrality; 6. Ideal class groups and units; 7. Quadratic fields and binary quadratic forms; 8. Cyclotomic fields; Part III. Analytic Methods: 9. Dirichlet series; 10. The Riemann zeta function; 11. The prime number theorem; Bibliography; Index.
| Erscheint lt. Verlag | 31.5.2026 |
|---|---|
| Reihe/Serie | London Mathematical Society Lecture Note Series |
| Zusatzinfo | Worked examples or Exercises |
| Verlagsort | Cambridge |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
| Mathematik / Informatik ► Mathematik ► Geschichte der Mathematik | |
| ISBN-10 | 1-009-72058-9 / 1009720589 |
| ISBN-13 | 978-1-009-72058-8 / 9781009720588 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95