Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture - Jinshan Yue

High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture

(Autor)

Buch | Softcover
118 Seiten
2025
Springer Verlag, Singapore
978-981-97-3479-5 (ISBN)
CHF 224,65 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken

Neural network (NN) algorithms are driving the rapid development of modern artificial intelligence (AI). The energy-efficient NN processor has become an urgent requirement for the practical NN applications on widespread low-power AI devices. To address this challenge, this dissertation investigates pure-digital and digital computing-in-memory (digital-CIM) solutions and carries out four major studies.

For pure-digital NN processors, this book analyses the insufficient data reuse in conventional architectures and proposes a kernel-optimized NN processor. This dissertation adopts a structural frequency-domain compression algorithm, named CirCNN. The fabricated processor shows 8.1x/4.2x area/energy efficiency compared to the state-of-the-art NN processor. For digital-CIM NN processors, this dissertation combines the flexibility of digital circuits with the high energy efficiency of CIM. The fabricated CIM processor validates the sparsity improvement of the CIM architecture for the first time. This dissertation further designs a processor that considers the weight updating problem on the CIM architecture for the first time.

This dissertation demonstrates that the combination of digital and CIM circuits is a promising technical route for an energy-efficient NN processor, which can promote the large-scale application of low-power AI devices.

 

Jinshan Yue received the B.S. and Ph.D. degrees from the Electronic Engineering Department, Tsinghua University, Beijing, China, in 2016 and 2021, respectively. He is currently a post-doctor and research assistant at the Institute of Microelectronics of the Chinese Academy of Sciences. His current research interests include energy-efficient neural network processor, non-volatile memory, and computing-in-memory system design. He has authored and co-authored over 60 technical papers. He has received the excellent doctoral dissertation of Tsinghua University, ASP-DAC2021 Student Research Forum Best Poster Award, and 2021 Beijing Nova Program.   

Introduction.- Basis and research status of neural network processor.- Neural network processor for specific kernel optimized data reuse.- Neural network processor with frequency domain compression algorithm optimization.- Neural network processor combining digital and computing in memory architecture.- Digital computing in memory neural network processor supporting large scale models.- Conclusion and prospect.

Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo 78 Illustrations, color; 3 Illustrations, black and white
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Schlagworte Application Specific Integrated Circuits • Application Specific Integrated Circuits • Computing-in-Memory • High Energy Efficiency • Neural Network Processor • System on chip
ISBN-10 981-97-3479-7 / 9819734797
ISBN-13 978-981-97-3479-5 / 9789819734795
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20