Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Classical Groups and Geometric Algebra

(Autor)

Buch | Softcover
169 Seiten
2002
American Mathematical Society (Verlag)
978-1-4704-7974-9 (ISBN)
CHF 139,30 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Classical groups"", named so by Hermann Weyl, are groups of matrices or quotients of matrix groups by small normal subgroups. Thus the story begins, as Weyl suggested, with ""Her All-embracing Majesty"", the general linear group $GL_n(V)$ of all invertible linear transformations of a vector space $V$ over a field $F$. All further groups discussed are either subgroups of $GL_n(V)$ or closely related quotient groups. Most of the classical groups consist of invertible linear transformations that respect a bilinear form having some geometric significance, e.g., a quadratic form, a symplectic form, etc. Accordingly, the author develops the required geometric notions, albeit from an algebraic point of view, as the end results should apply to vector spaces over more-or-less arbitrary fields, finite or infinite. The classical groups have proved to be important in a wide variety of venues, ranging from physics to geometry and far beyond. In recent years, they have played a prominent role in the classification of the finite simple groups. This text provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles. It is intended for graduate students who have completed standard courses in linear algebra and abstract algebra. The author, L. C. Grove, is a well-known expert who has published extensively in the subject area.

Larry C. Grove, University of Arizona, Tuscon, AZ.

Chapters
Chapter 0. Permutation actions
Chapter 1. The basic linear groups
Chapter 2. Bilinear forms
Chapter 3. Symplectic groups
Chapter 4. Symmetric forms and quadratic forms
Chapter 5. Orthogonal geometry (char $F/ne 2$)
Chapter 6. Orthogonal groups (char $F /ne 2$), I
Chapter 7. $O(V)$, $V$ Euclidean
Chapter 8. Clifford algebras (char $F /ne 2$)
Chapter 9. Orthogonal groups (char $F /ne 2$), II
Chapter 10. Hermitian forms and unitary spaces
Chapter 11. Unitary groups
Chapter 12. Orthogonal geometry (char $F = 2$)
Chapter 13. Clifford algebras (char $F = 2$)
Chapter 14. Orthogonal groups (char $F = 2$)
Chapter 15. Further developments

Erscheint lt. Verlag 30.12.2002
Reihe/Serie Graduate Studies in Mathematics
Verlagsort Providence
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4704-7974-5 / 1470479745
ISBN-13 978-1-4704-7974-9 / 9781470479749
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung für Studienanfänger

von Gerd Fischer; Boris Springborn

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95