Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Diagrammatic Algebra - Chris Bowman

Diagrammatic Algebra

(Autor)

Buch | Softcover
XXIV, 376 Seiten
2025
Springer International Publishing (Verlag)
978-3-031-88800-7 (ISBN)
CHF 89,85 inkl. MwSt

Diagrammatic Algebra provides the intuition and tools necessary to address some of the key questions in modern representation theory, chief among them Lusztig s conjecture. This book offers a largely self-contained introduction to diagrammatic algebra, culminating in an explicit and entirely diagrammatic treatment of Geordie Williamson s explosive torsion counterexamples in full detail.

The book begins with an overview of group theory and representation theory: first encountering Coxeter groups through their actions on puzzles, necklaces, and Platonic solids; then building up to non-semisimple representations of Temperley Lieb and zig-zag algebras; and finally constructing simple representations of binary Schur algebras using the language of coloured Pascal triangles. Next, Kazhdan Lusztig polynomials are introduced, with their study motivated by their combinatorial properties. The discussion then turns to diagrammatic Hecke categories and their associated p-Kazhdan Lusztig polynomials, explored in a hands-on manner with numerous examples. The book concludes by showing that the problem of determining the prime divisors of Fibonacci numbers is a special case of the problem of calculating p-Kazhdan Lusztig polynomials using only elementary diagrammatic calculations and some manipulation of (5x5)-matrices. 

Richly illustrated and assuming only undergraduate-level linear algebra, this is a particularly accessible introduction to cutting-edge topics in representation theory. The elementary-yet-modern presentation will also be of interest to experts.

Chris Bowman is a Reader in Pure Mathematics at the University of York, UK. His research interests lie broadly in combinatorial representation theory, with a particular focus on diagrammatic methods.

Part I: Groups.- 1 Symmetries.- 2 Coxeter groups and the 15 puzzle.- 3 Composition series.- 4 Platonic and Archimedean solids and special orthogonal groups.- Part II: Algebras and representation theory.- 5 Non-invertible symmetry.- 6 Representation theory.- Part III: Combinatorics.- 7 Catalan combinatorics within Kazhdan Lusztig theory.- 8 General Kazhdan Lusztig theory.- Part IV: Categorification.- 9 The diagrammatic algebra for S × S S .- 10 Lusztig s conjecture in the diagrammatic algebra H(W,P).- Part V: Group theory versus diagrammatic algebra.- 11 Reformulating Lusztig s and Andersen s conjectures.- 12 Hidden gradings on symmetric groups.- 13 The -Kazhdan Lusztig theory for Temperley Lieb algebras.

Erscheinungsdatum
Reihe/Serie Universitext
Zusatzinfo XXIV, 376 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Schlagworte categorification • diagram algebras • diagrammatic algebra • Hecke categories • Kazhdan-Lusztig theory • Lusztig's conjecture • Lusztig’s conjecture • Modular Representation Theory • p-Kazhdan-Lusztig polynomials • Schur algebras • Symmetric group • Temperley-Lieb algebras
ISBN-10 3-031-88800-6 / 3031888006
ISBN-13 978-3-031-88800-7 / 9783031888007
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung für Studienanfänger

von Gerd Fischer; Boris Springborn

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95