Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Solution of Initial-Boundary Value Problems

Method of Moving Modes
Buch | Hardcover
VII, 126 Seiten
2025
De Gruyter (Verlag)
978-3-11-130439-7 (ISBN)

Lese- und Medienproben

Solution of Initial-Boundary Value Problems - Umurdin Dalabaev
CHF 159,95 inkl. MwSt
  • Versand in 10-14 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

Methods for solving problems of mathematical physics can be divided into the following four classes.

Analytical methods (the method of separation of variables, the method of characteristics, the method of Green's functions, etc.) methods have a relatively low degree of universality, i.e. focused on solving rather narrow classes of problems.

Approximate analytical methods (projection, variational methods, small parameter method, operational methods, various iterative methods) are more versatile than analytical ones.

Numerical methods (finite difference method, direct method, control volume method, finite element method, etc.) are very universal methods.

Probabilistic methods (Monte Carlo methods) are highly versatile. Can be used to calculate discontinuous solutions. However, they require large amounts of calculations and, as a rule, they lose with the computational complexity of the above methods when solving such problems to which these methods are applicable.

Comparing methods for solving problems of mathematical physics, it is impossible to give unconditional primacy to any of them. Any of them may be the best for solving problems of a certain class.

The proposed method of moving nodes for boundary value problems of differential equations combines a combination of numerical and analytical methods. In this case, we can obtain, on the one hand, an approximately analytical solution of the problem, which is not related to the methods listed above. On the other hand, this method allows one to obtain compact discrete approximations of the original problem. Note that obtaining an approximately analytical solution of differential equations is based on numerical methods. The nature of numerical methods also allows obtaining an approximate analytical expression for solving differential equations

Dr. Dalabaev is a professor at the University of World Economy and Diplomacy, Department of Mathematic modelling & Information Systems, Tashkent, Uzbekistan. His research interests are in computational fluid dynamics, numerical methods, modelling two phase flow, particle motion in fluids, moving node method, approximate-analytical solution of a differential equation.

Erscheinungsdatum
Reihe/Serie De Gruyter Series in Applied and Numerical Mathematics ; 11
Zusatzinfo 51 b/w and 28 col. ill., 6 b/w tbl.
Verlagsort Berlin/Boston
Sprache englisch
Maße 170 x 240 mm
Gewicht 370 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Approximate analytical solution • Approximation error • Compact schemes. • difference equation • differential equation • Differentialgleichungen • Differenzengleichung • Kompakte Schemata • Näherungsfehler • Ungefähre analytische Lösung
ISBN-10 3-11-130439-6 / 3111304396
ISBN-13 978-3-11-130439-7 / 9783111304397
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95
Differentialrechnung im ℝⁿ, gewöhnliche Differentialgleichungen

von Otto Forster; Florian Lindemann

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 46,15