Contents

Introduction —— 1

Cha	pter	1
CIIG	Pici	

Basics of n	umerical methods —— 3
1.1	Grids and grid functions: introductory concepts —— 3
1.2	Difference schemes for the boundary value problem of an ordinary
	differential equation —— 5
1.2.1	Finite-difference method —— 5
1.2.2	The control volume method —— 7
1.3	Numerical solution of the Cauchy problem for an ordinary differential
1 2 1	equation —— 11
1.3.1	Explicit Euler method —— 12
1.3.2	Implicit Euler method —— 13
1.3.3	Improved explicit Euler method —— 13
1.4	Numerical methods for a parabolic equation —— 14
1.4.1	Explicit difference scheme —— 14
1.4.2	Implicit difference scheme —— 15
1.4.3	Crank-Nicholson difference scheme —— 16
1.5	Solution of the Dirichlet problem for the Laplace equation using the grid method —— 16
	grid metriod —— 10
Chapter 2	
The metho	d of moving nodes for two-point boundary value problems —— 18
2.1	The concept of a moving node —— 18
2.2	Obtaining an approximate analytical solution of an ODE with one
	movable node —— 19
2.2.1	The concept of a movable node —— 19
2.2.2	Boundary value problem with diffusion —— 20
2.2.3	MNM for the convection-diffusion equation —— 21
2.2.4	Convection-diffusion equation with a variable coefficient —— 22
2.2.5	Flow in a flat pipe —— 23
2.2.6	Flow in a round pipe —— 25
2.2.7	Heat propagation in a plate —— 26
2.2.8	Magnetohydrodynamic Couette flow —— 27
2.3	Obtaining an analytical solution with several moving nodes —— 28
2.3.1	Movable node method for a one-dimensional convection-diffusion

Analytical method of control volume for one-dimensional convection-

Increasing the accuracy using Richardson extrapolation —— **36**

2.3.2

2.3.3

problem — 28

diffusion problem —— 32

2.4	Obtaining discrete compact schemes for the convective-diffusion problem of the MNM —— 37
2.4.1	Construction of compact schemes of the convection-diffusion problem based on the FDM —— 38
2.4.2	Construction of compact schemes of convection-diffusion problem based on finite volume method —— 40
2.4.3	Construction of schemes using the Richardson extrapolation method —— 42
2.5	Effect of the choice of the profile on the edge of the control volume on the quality of difference schemes —— 43
2.6	Improving the circuit using flow equality —— 47
2.7	Study of the scheme using the MNM —— 49
2.7.1	Study of monotonicity —— 49
2.7.2	Calculating the residual —— 51
2.8	On convergence of MNM —— 53
Chapter	· 3
Solution	of the Cauchy problem —— 55
3.1	Solution of the Cauchy problem —— 55
3.1.1	Explicit Euler method —— 55
3.1.2	Implicit Euler method for a linear equation —— 56
3.1.3	Implicit Euler method for a nonlinear equation —— 57
3.1.4	Nonlinear problem —— 61
3.2	On the convergence of the MNM —— 63
Chapter	4
Solution	of initial-boundary value problems for a parabolic equation —— 65
4.1	Approximate solution of a parabolic equation with one
	movable node —— 65
4.2	Examples of problem solutions —— 67
4.2.1	The first problem —— 67
4.2.2	Second problem —— 69
4.2.3	The third problem —— 70
4.2.4	Unsteady flow of viscous fluid between parallel walls —— 71
4.2.5	Problem with a boundary condition of the second kind —— 74
4.3	Approximate solution for the initial boundary value problem of a
	parabolic equation by the method of lines —— 75
4.3.1	Approximation with respect to the variable t — 76
4.3.2	Approximations by variable <i>x</i> —— 77
4.4	Nonstationary convection-diffusion equation —— 81
4.4.1	Approximation of the convection-diffusion equation —— 82
4.4.2	Test examples —— 83

4.5	Improving the solution of a parabolic equation with multipoint movable nodes —— 87	
4.5.1	Approximate solution of a parabolic equation based on a multipoint movable node —— 87	
4.5.2	Numerical experiments —— 91	
Chapter 5		
Solving bo	oundary value problems for elliptic equations —— 95	
5.1	Solving the Dirichlet problem for two-dimensional boundary value problems by the method of movable nodes —— 95	
5.1.1	Test examples —— 97	
5.1.2	Flow in an ellipsoidal pipe —— 99	
5.1.3	Flow in a rectangular pipe —— 100	
5.1.4	Calculating the temperature field in a solid by a movable control volume —— 101	
5.1.5	Obtaining a solution for flow in a porous pipe using the moving control volume method —— 103	
5.2	Solution of the Neumann problem for two-dimensional boundary value problems by the MNM —— 106	
5.2.1	Flow in a pipe with a triangular cross section —— 107	
5.2.2	Solution of the open flow problem with a rectangular cross section —— 109	
5.2.3	Solution of the open flow problem with a trapezoidal cross section —— 110	
5.3	Improving the approximate solution for boundary value problems —— 110	
5.3.1	Obtaining an approximate solution to the problem with	
	approximation with respect to the variable x —— 111	
5.3.2	Obtaining an approximate solution to the problem by approximating the variable y —— 112	
5.3.3	Solution of test problems —— 112	
5.3.4	Improving the solution to the problem of flow in a	
	rectangular pipe —— 118	
5.3.5	Flow at the inlet section of the pipe —— 119	
Conclusio	ns —— 122	
References —— 123		

Index —— 125