Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory - Donald Yau

Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory

Volume II: Braided Bimonoidal Categories with Applications

(Autor)

Buch | Softcover
404 Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-7810-0 (ISBN)
CHF 219,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Explore bimonoidal categories—ring-like structures without additive inverses—that merge ideas in category theory, homotopy, and algebraic K-theory. Uniting braided frameworks, coherence theorems, and higher monoidal constructions, the work reveals rich interconnections with quantum groups and topological quantum computation.
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories, Volume II: Braided Bimonoidal Categories with Applications-this book, and Volume III: From Categories to Structured Ring Spectra) provide a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user-friendly resource for beginners and experts alike. Part 1 of this book studies braided bimonoidal categories, with applications to quantum groups and topological quantum computation. It is proved that the categories of modules over a braided bialgebra, of Fibonacci anyons, and of Ising anyons form braided bimonoidal categories. Two coherence theorems for braided bimonoidal categories are proved, confirming the Blass-Gurevich Conjecture. The rest of this part discusses braided analogues of Baez's Conjecture and the monoidal bicategorical matrix construction in Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories. Part 2 studies ring and bipermutative categories in the sense of Elmendorf-Mandell, braided ring categories, and $E_n$-monoidal categories, which combine $n$-fold monoidal categories with ring categories.

Donald Yau, The Ohio State University at Newark, OH

Braided bimonoidal categories
Preliminaries on braided structures
Braided bimonoidal categories
Applications to quantum groups and topological quantum computation
Bimonoidal centers
Coherence of braided bimonoidal categories
Strictification of tight braided bimonoidal categories
The braided Baez conjecture
Monoidal bicategorification
$E_n$-monoidal categories
Ring, bipermutative, and braided ring categories
Iterated and $E_n$-monoidal categories
Bibliography and indices
Open questions
Bibliography
List of main facts
List of notations
Index

Erscheinungsdatum
Reihe/Serie Mathematical Surveys and Monographs
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4704-7810-2 / 1470478102
ISBN-13 978-1-4704-7810-0 / 9781470478100
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung für Studienanfänger

von Gerd Fischer; Boris Springborn

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95