Period Spaces for p-divisible Groups
Seiten
1996
Princeton University Press (Verlag)
978-0-691-02782-1 (ISBN)
Princeton University Press (Verlag)
978-0-691-02782-1 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
This volume is concerned with p-adic domains and the relation of such domains to moduli space of p-divisible groups. In addition, non-archimedean uniformization theories for general Shimura varieties are established.
In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established.
The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established.
The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
M. Rapoport is Professor of Mathematics at the University of Wuppertal. Th. Zink is Professor of Mathematics at the University of Bielefeld.
| Verlagsort | New Jersey |
|---|---|
| Sprache | englisch |
| Maße | 152 x 229 mm |
| Gewicht | 680 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| ISBN-10 | 0-691-02782-X / 069102782X |
| ISBN-13 | 978-0-691-02782-1 / 9780691027821 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Grundlagen für das Bachelor-Studium
Buch | Hardcover (2023)
Hanser (Verlag)
CHF 55,95