Period Spaces for p-divisible Groups
Seiten
1996
Princeton University Press (Verlag)
978-0-691-02781-4 (ISBN)
Princeton University Press (Verlag)
978-0-691-02781-4 (ISBN)
A monograph that associates p-adic period domains to arbitrary reductive groups. Using the concept of rigid-analytic period maps, it investigates the relation of p-adic period domains to moduli space of p-divisible groups. It also establishes non-archimedean uniformization theorems for general Shimura varieties.
In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
M. Rapoport is Professor of Mathematics at the University of Wuppertal. Th. Zink is Professor of Mathematics at the University of Bielefeld.
Introduction1p-adic symmetric domains32Quasi-isogenies of p-divisible groups493Moduli spaces of p-divisible groups69Appendix: Normal forms of lattice chains1314The formal Hecke correspondences1975The period morphism and the rigid-analytic coverings2296The p-adic uniformization of Shimura varieties273Bibliography317Index323
| Erscheint lt. Verlag | 11.1.1996 |
|---|---|
| Verlagsort | New Jersey |
| Sprache | englisch |
| Maße | 152 x 229 mm |
| Gewicht | 482 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| ISBN-10 | 0-691-02781-1 / 0691027811 |
| ISBN-13 | 978-0-691-02781-4 / 9780691027814 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Versteckte Beiträge, die die Welt verändert haben
Buch | Hardcover (2023)
Springer (Verlag)
CHF 46,15