D-Modules, Perverse Sheaves, and Representation Theory
Seiten
2007
Birkhauser Boston Inc (Verlag)
978-0-8176-4363-8 (ISBN)
Birkhauser Boston Inc (Verlag)
978-0-8176-4363-8 (ISBN)
D-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory.
Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory.
To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory.
Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory.
To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory.
D-Modules and Perverse Sheaves.- Preliminary Notions.- Coherent D-Modules.- Holonomic D-Modules.- Analytic D-Modules and the de Rham Functor.- Theory of Meromorphic Connections.- Regular Holonomic D-Modules.- Riemann–Hilbert Correspondence.- Perverse Sheaves.- Representation Theory.- Algebraic Groups and Lie Algebras.- Conjugacy Classes of Semisimple Lie Algebras.- Representations of Lie Algebras and D-Modules.- Character Formula of HighestWeight Modules.- Hecke Algebras and Hodge Modules.
| Erscheint lt. Verlag | 7.11.2007 |
|---|---|
| Reihe/Serie | Progress in Mathematics ; 236 |
| Übersetzer | Kiyoshi Takeuchi |
| Zusatzinfo | 1 Illustrations, black and white; XI, 412 p. |
| Verlagsort | Secaucus |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8176-4363-X / 081764363X |
| ISBN-13 | 978-0-8176-4363-8 / 9780817643638 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95