SL2 Representations of Finitely Presented Groups
1995
American Mathematical Society (Verlag)
9780821804162 (ISBN)
American Mathematical Society (Verlag)
9780821804162 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Includes and extends much of the classical theory of $SL(2)$ representations of groups. This book features: a finitely computable invariant $H[/pi]$ associated to groups and used to study the $SL(2)$ representations of $/pi$; and, invariant theory and knot theory related through $SL(2)$ representations of knot groups.
This book is essentially self-contained and requires only a basic abstract algebra course as background. The book includes and extends much of the classical theory of $SL(2)$ representations of groups. Readers will find $SL(2)$Representations of Finitely Presented Groups relevant to geometric theory of three dimensional manifolds, representations of infinite groups, and invariant theory. It features: a new finitely computable invariant $H[/pi]$ associated to groups and used to study the $SL(2)$ representations of $/pi$; and, invariant theory and knot theory related through $SL(2)$ representations of knot groups.
This book is essentially self-contained and requires only a basic abstract algebra course as background. The book includes and extends much of the classical theory of $SL(2)$ representations of groups. Readers will find $SL(2)$Representations of Finitely Presented Groups relevant to geometric theory of three dimensional manifolds, representations of infinite groups, and invariant theory. It features: a new finitely computable invariant $H[/pi]$ associated to groups and used to study the $SL(2)$ representations of $/pi$; and, invariant theory and knot theory related through $SL(2)$ representations of knot groups.
The definition and some basic properties of the algebra $H[/pi]$ A decomposition of the algebra $H[/pi]$ when $/frac 12/in k$ Structure of the algebra $H[/pi]$ for two-generator groups Absolutely irreducible $SL(2)$ representations of two-generator groups Further identities in the algebra $H[/pi]$ when $/frac 12/in k$ Structure of $H^+[/pi_n]$ for free groups $/pi_n$ Quaternion algebra localizations of $H[/pi]$ and absolutely irreducible $SL(2)$ representations Algebro-geometric interpretation of $SL(2)$ representations of groups The universal matrix representation of the algebra $H[/pi]$ Some knot invariants derived from the algebra $H[/pi]$ Appendix A Appendix B References.
| Erscheint lt. Verlag | 30.7.1995 |
|---|---|
| Reihe/Serie | Contemporary Mathematics |
| Zusatzinfo | illustrations |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 373 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-13 | 9780821804162 / 9780821804162 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95