Quiver Grassmannians of Extended Dynkin Type $D$
Part I: Schubert Systems and Decompositions Into Affine Spaces
Seiten
2019
American Mathematical Society (Verlag)
978-1-4704-3647-6 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-3647-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Let $Q$ be a quiver of extended Dynkin type $/widetilde{D}_n$. In this first of two papers, the authors show that the quiver Grassmannian $/mathrm{Gr}_{/underline{e}}(M)$ has a decomposition into affine spaces for every dimension vector $/underline{e}$ and every indecomposable representation $M$ of defect $-1$ and defect $0$, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for $M$. The method of proof is to exhibit explicit equations for the Schubert cells of $/mathrm{Gr}_{/underline{e}}(M)$ and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems.
In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations $M$ of $Q$ and determine explicit formulae for the $F$-polynomial of $M$.
In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations $M$ of $Q$ and determine explicit formulae for the $F$-polynomial of $M$.
Oliver Lorscheid, Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, Brazil. Thorsten Weist, Bergische Universitat Wuppertal, Germany.
Introduction
Background
Schubert systems
First applications
Schubert decompositions for type $/widetilde{D}_n$
Proof of Theorem 4.1
Appendix A. Representations for quivers of type $/widetilde{D}_n$
Appendix B. Bases for representations of type $/widetilde{D}_n$
Bibliography.
| Erscheinungsdatum | 31.12.2019 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 180 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 1-4704-3647-7 / 1470436477 |
| ISBN-13 | 978-1-4704-3647-6 / 9781470436476 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95