Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometry Of Matrices: In Memory Of Professor L K Hua (1910 - 1985) - Zhe-Xian Wan

Geometry Of Matrices: In Memory Of Professor L K Hua (1910 - 1985)

(Autor)

Buch | Hardcover
388 Seiten
1996
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-2638-1 (ISBN)
CHF 195,50 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This text is a survey of the geometry of matrices whose study was initiated by L.K. Hua in the 1940s.The geometry of rectangular matrices and of hermitian matrices over a division ring or a field are studied in detail.
The present monograph is a state-of-art survey of the geometry of matrices whose study was initiated by L K Hua in the forties. The geometry of rectangular matrices, of alternate matrices, of symmetric matrices, and of hermitian matrices over a division ring or a field are studied in detail. The author's recent results on geometry of symmetric matrices and of hermitian matrices are included. A chapter on linear algebra over a division ring and one on affine and projective geometry over a division ring are also included. The book is clearly written so that graduate students and third or fourth year undergraduate students in mathematics can read it without difficulty.

Part 1 Linear algebra over division rings: matrices over division rings; matrix representations of subspaces; systems of linear equations. Part 2 Affine geometry and projective geometry: affine spaces and affine groups; projective spaces and projective groups; one-dimensional projective geometry. Part 3 Geometry of rectangular matrices: the space of rectangular matrices; proof of the fundamental theorem; application to graph theory. Part 4 Geometry of alternate matrices: the space of alternate matrices; maximal sets. Part 5 Geometry of symmetric matrices: the space of symmetric matrices; proof of the fundamental theorem I-III. Part 6 Geometry of hermitian matrices: maximal sets of rank 1; proof of the fundamental theorem (the case n is greater than or equal to 3); the maximal set of rank 2 (n=2); proof of the fundamental theorem (the case n=2); and others.

Erscheint lt. Verlag 1.5.1996
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 981-02-2638-1 / 9810226381
ISBN-13 978-981-02-2638-1 / 9789810226381
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung für Studienanfänger

von Gerd Fischer; Boris Springborn

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95