Singularities and Computer Algebra
Springer International Publishing (Verlag)
978-3-319-80435-4 (ISBN)
Wolfram Decker is a professor in the Department of Mathematics at the TU Kaiserslautern, Germany.Gerhard Pfister is a professor in the Department of Mathematics at the TU Kaiserslautern, Germany.Mathias Schulze is a professor in the Department of Mathematics at the TU Kaiserslautern, Germany.
Gert-Martin Greuel's work, Duco van Straten.- Divisor class groups of affine complete intersections, Helmut Hamm.- Rational plane quartics and K3 surfaces, Viktor Kulikov.- Remarks on the Lê-Greuel formula for the Milnor number, José Seade.- Bi-Lipschitz regular complex space are regular, Lê D ng Tráng.- Enumeration of real algebraic curves, Eugenii Shustin.- A real analytic cell complex for the braid group, Norbert A'Campo.- Old and new regarding the Seiberg-Witten invariant conjecture, Andras Nemethi.- Multiplication by f in the Jacobian algebra as bindings in the spectrum of a hypersurface with an isolated singularity, Xavier Gomez-Mont.- Marked singularities, their moduli spaces, and atlases of stokes data, Claus Hertling.- Depth and regularity of powers of sums of ideals, Ngô Vi t Trung.- Deforming non-normal isolated surface singularities, Jan Stevens.- Vanishing topology of Cohen-Macaulay codimension2 3-folds, Anne Frühbis-Krüger.- Equisingular moduli of rational surface singularities, Jonathan Wahl.- Algebraic bubbling for vector bundles on surfaces, Günter Trautmann.- Recombination formulas for the spectrum of plane curve singularities, Dmitry Kerner.- Minors and categorical resolutions, Yuri Drozd.- Resolutions of cubical varieties, Joseph Steenbrink.- Hypersurfaces with 1-dimensional singularities, Dirk Siersma.- Higher order Euler characteristics, their generalizations and generating series, Sabir Gusein-Zade.- Torsion free sheaves on degenerate elliptic curves and the classical Yang-Baxter equation, Igor Burban.- Normal lattice polytopes, Winfried Bruns.- Möbius strips, knots, pentagons, polyhedra and the SURFER, Stephan Klaus.- Computational D-module theory and singularities, Viktor Levandovskyy.- Orbifold zeta functions for dual invertible polynomials, Wolfgang Ebeling.- Polarity maps, singular subschemes, and applications, Antonio Campillo.- Parallelisation in Singular, Hans Schönemann.- Milnor number, discriminant and unfolding of isolated singularities in positive characteristic, Duc Nguyen.
| Erscheinungsdatum | 29.07.2018 |
|---|---|
| Zusatzinfo | XIV, 389 p. 55 illus., 19 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 617 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| Schlagworte | Algebraic Geometry • Complex Analysis • Computer Algebra • Ordinary differential equations • singularity theory • Topology |
| ISBN-10 | 3-319-80435-9 / 3319804359 |
| ISBN-13 | 978-3-319-80435-4 / 9783319804354 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich