Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Introduction to Robotics

Analysis, Control, Applications

(Autor)

Buch | Hardcover
528 Seiten
2020 | 3rd edition
John Wiley & Sons Inc (Verlag)
978-1-119-52762-6 (ISBN)
CHF 215,60 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Introduction to Robotics: Analysis, Control, Applications, 3rd Edition

The revised text to the analysis, control, and applications of robotics

The revised and updated third edition of Introduction to Robotics: Analysis, Control, Applications, offers a guide to the fundamentals of robotics, robot components and subsystems and applications. The author—a noted expert on the topic—covers the mechanics and kinematics of serial and parallel robots, both with the Denavit-Hartenberg approach as well as screw-based mechanics. In addition, the text contains information on microprocessor applications, control systems, vision systems, sensors, and actuators.

Introduction to Robotics gives engineering students and practicing engineers the information needed to design a robot, to integrate a robot in appropriate applications, or to analyze a robot. The updated third edition contains many new subjects and the content has been streamlined throughout the text. The new edition includes two completely new chapters on screw-based mechanics and parallel robots. The book is filled with many new illustrative examples and includes homework problems designed to enhance learning. This important text:



Offers a revised and updated guide to the fundamental of robotics
Contains information on robot components, robot characteristics, robot languages, and robotic applications
Covers the kinematics of serial robots with Denavit-Hartenberg methodology and screw-based mechanics
Includes the fundamentals of control engineering, including analysis and design tools
Discusses kinematics of parallel robots

Written for students of engineering as well as practicing engineers, Introduction to Robotics, Third Edition reviews the basics of robotics, robot components and subsystems, applications, and has been revised to include the most recent developments in the field.

SAEED BENJAMIN NIKU, PhD, P.E., is a Professor of Mechanical Engineering at California Polytechnic State University, San Luis Obispo, California. He has taught courses in mechanics, robotics, design, and creativity.

Preface xv

About the Companion Website xix

1 Fundamentals 1

1.1 Introduction 1

1.2 What Is a Robot? 2

1.3 Classification of Robots 3

1.4 What Is Robotics? 3

1.5 History of Robotics 3

1.6 Advantages and Disadvantages of Robots 4

1.7 Robot Components 5

1.8 Robot Degrees of Freedom 7

1.9 Robot Joints 9

1.10 Robot Coordinates 9

1.11 Robot Reference Frames 11

1.12 Programming Modes 12

1.13 Robot Characteristics 13

1.14 Robot Workspace 13

1.15 Robot Languages 14

1.16 Robot Applications 17

1.17 Other Robots and Applications 23

1.18 Collaborative Robots 28

1.19 Social Issues 29

1.20 Summary 30

2 Kinematics of Serial Robots: Position Analysis 35

2.1 Introduction 35

2.2 Robots as Mechanisms 35

2.3 Conventions 37

2.4 Matrix Representation 37

2.5 Homogeneous Transformation Matrices 45

2.6 Representation of Transformations 46

2.7 Inverse of Transformation Matrices 54

2.8 Forward and Inverse Kinematics of Robots 59

2.9 Forward and Inverse Kinematic Equations: Position 60

2.10 Forward and Inverse Kinematic Equations: Orientation 65

2.11 Forward and Inverse Kinematic Equations: Position and Orientation 70

2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots 70

2.13 The Inverse Kinematic Solution of Robots 84

2.14 Inverse Kinematic Programming of Robots 89

2.15 Dual-Arm Cooperating Robots 91

2.16 Degeneracy and Dexterity 92

2.16.1 Degeneracy 92

2.16.2 Dexterity 93

2.17 The Fundamental Problem with the Denavit-Hartenberg Representation 93

2.18 Design Projects 95

2.19 Summary 99

3 Robot Kinematics with Screw-Based Mechanics 111

3.1 Introduction 111

3.2 What Is a Screw? 111

3.3 Rotation about a Screw Axis 112

3.4 Homogenous Transformations about a General Screw Axis 115

3.5 Successive Screw-Based Transformations 119

3.6 Forward and Inverse Position Analysis of an Articulated Robot 120

3.7 Design Projects 127

3.8 Summary 127

4 Kinematics Analysis of Parallel Robots 133

4.1 Introduction 133

4.2 Physical Characteristics of Parallel Robots 134

4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach 139

4.4 Forward and Inverse Kinematics of Planar Parallel Robots 140

4.5 Forward and Inverse Kinematics of Spatial Parallel Robots 147

4.6 Other Parallel Robot Configurations 169

4.7 Design Projects 169

4.8 Summary 170

5 Differential Motions and Velocities 173

5.1 Introduction 173

5.2 Differential Relationships 173

5.3 The Jacobian 174

5.4 Differential versus Large-Scale Motions 176

5.5 Differential Motions of a Frame versus a Robot 177

5.6 Differential Motions of a Frame 178

5.7 Interpretation of the Differential Change 182

5.8 Differential Changes between Frames 183

5.9 Differential Motions of a Robot and Its Hand Frame 185

5.10 Calculation of the Jacobian 185

5.11 How to Relate the Jacobian and the Differential Operator 188

5.12 The Inverse Jacobian 191

5.13 Calculation of the Jacobian with Screw-Based Mechanics 197

5.14 The Inverse Jacobian for the Screw-Based Method 206

5.15 Calculation of the Jacobians of Parallel Robots 206

5.16 Design Projects 210

5.17 Summary 210

6 Dynamic and Force Analysis 219

6.1 Introduction 219

6.2 Lagrangian Mechanics: A Short Overview 220

6.3 Effective Moments of Inertia 229

6.4 Dynamic Equations for Multiple-DOF Robots 229

6.5 Static Force Analysis of Robots 239

6.6 Transformation of Forces and Moments between Coordinate Frames 242

6.7 Design Project 244

6.8 Summary 244

7 Trajectory Planning 247

7.1 Introduction 247

7.2 Path vs. Trajectory 247

7.3 Joint-Space vs. Cartesian-Space Descriptions 248

7.4 Basics of Trajectory Planning 249

7.5 Joint-Space Trajectory Planning 252

7.6 Cartesian-Space Trajectories 263

7.7 Continuous Trajectory Recording 267

7.8 Design Project 268

7.9 Summary 269

8 Motion Control Systems 273

8.1 Introduction 273

8.2 Basic Components and Terminology 273

8.3 Block Diagrams 274

8.4 System Dynamics 274

8.5 Laplace Transform 278

8.6 Inverse Laplace Transform 281

8.7 Transfer Functions 285

8.8 Block Diagram Algebra 288

8.9 Characteristics of First-Order Transfer Functions 290

8.10 Characteristics of Second-Order Transfer Functions 292

8.11 Characteristic Equation: Pole/Zero Mapping 294

8.12 Steady-State Error 296

8.13 Root Locus Method 298

8.14 Proportional Controllers 303

8.15 Proportional-Plus-Integral Controllers 306

8.16 Proportional-Plus-Derivative Controllers 308

8.17 Proportional-Integral-Derivative Controller (PID) 311

8.18 Lead and Lag Compensators 313

8.19 Bode Diagram and Frequency-Domain Analysis 313

8.20 Open-Loop vs. Closed-Loop Applications 314

8.21 Multiple-Input and Multiple-Output Systems 314

8.22 State-Space Control Methodology 316

8.23 Digital Control 320

8.24 Nonlinear Control Systems 322

8.25 Electromechanical Systems Dynamics: Robot Actuation and Control 323

8.26 Design Projects 326

8.27 Summary 327

9 Actuators and Drive Systems 331

9.1 Introduction 331

9.2 Characteristics of Actuating Systems 331

9.3 Comparison of Actuating Systems 335

9.4 Hydraulic Actuators 335

9.5 Pneumatic Devices 337

9.6 Electric Motors 338

9.7 Microprocessor Control of Electric Motors 360

9.8 Magnetostrictive Actuators 364

9.9 Shape-Memory Type Metals 364

9.10 Electroactive Polymer Actuators (EAPs) 364

9.11 Speed Reduction 365

9.12 Other Systems 367

9.13 Design Projects 367

9.14 Summary 370

10 Sensors 375

10.1 Introduction 375

10.2 Sensor Characteristics 375

10.3 Sensor Utilization 377

10.4 Position Sensors 378

10.5 Velocity Sensors 385

10.6 Acceleration Sensors 386

10.7 Force and Pressure Sensors 386

10.8 Torque Sensors 388

10.9 Microswitches 389

10.10 Visible Light and Infrared Sensors 389

10.11 Touch and Tactile Sensors 390

10.12 Proximity Sensors 391

10.13 Range Finders 393

10.14 Sniff Sensors 396

10.15 Vision Systems 396

10.16 Voice-Recognition Devices 396

10.17 Voice Synthesizers 397

10.18 Remote Center Compliance (RCC) Device 397

10.19 Design Project 400

10.20 Summary 400

11 Image Processing and Analysis with Vision Systems 403

11.1 Introduction 403

11.2 Basic Concepts 403

11.3 Fourier Transform and Frequency Content of a Signal 406

11.4 Frequency Content of an Image: Noise and Edges 409

11.5 Resolution and Quantization 410

11.6 Sampling Theorem 412

11.7 Image-Processing Techniques 415

11.8 Histograms of Images 415

11.9 Thresholding 418

11.10 Spatial Domain Operations Convolution Mask 419

11.11 Connectivity 424

11.12 Noise Reduction 426

11.13 Edge Detection 430

11.14 Sharpening an Image 436

11.15 Hough Transform 437

11.16 Segmentation 440

11.17 Segmentation by Region Growing and Region Splitting 441

11.18 Binary Morphology Operations 444

11.19 Gray Morphology Operations 449

11.20 Image Analysis 449

11.21 Object Recognition by Features 450

11.22 Depth Measurement with Vision Systems 457

11.23 Specialized Lighting 459

11.24 Image Data Compression 460

11.25 Color Images 462

11.26 Heuristics 462

11.27 Applications of Vision Systems 462

11.28 Design Project 463

11.29 Summary 464

12 Fuzzy Logic Control 475

12.1 Introduction 475

12.2 Fuzzy Control: What Is Needed 476

12.3 Crisp Values vs. Fuzzy Values 476

12.4 Fuzzy Sets: Degrees of Truth and Membership 477

12.5 Fuzzification 477

12.6 Fuzzy Inference Rules 480

12.7 Defuzzification 481

12.8 Simulation of a Fuzzy Logic Controller 485

12.9 Applications of Fuzzy Logic in Robotics 487

12.10 Design Project 488

12.11 Summary 489

References 489

Problems 490

Appendix A 491

Appendix B 499

Index 501

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 216 x 277 mm
Gewicht 1542 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
ISBN-10 1-119-52762-7 / 1119527627
ISBN-13 978-1-119-52762-6 / 9781119527626
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75