Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

A Data Scientist's Guide to Acquiring, Cleaning, and Managing Data in R (eBook)

eBook Download: PDF
2017
John Wiley & Sons (Verlag)
978-1-119-08007-7 (ISBN)

Lese- und Medienproben

A Data Scientist's Guide to Acquiring, Cleaning, and Managing Data in R - Samuel E. Buttrey, Lyn R. Whitaker
Systemvoraussetzungen
60,99 inkl. MwSt
(CHF 59,55)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The only how-to guide offering a unified, systemic approach to acquiring, cleaning, and managing data in R

Every experienced practitioner knows that preparing data for modeling is a painstaking, time-consuming process. Adding to the difficulty is that most modelers learn the steps involved in cleaning and managing data piecemeal, often on the fly, or they develop their own ad hoc methods. This book helps simplify their task by providing a unified, systematic approach to acquiring, modeling, manipulating, cleaning, and maintaining data in R. 

Starting with the very basics, data scientists Samuel E. Buttrey and Lyn R. Whitaker walk readers through the entire process. From what data looks like and what it should look like, they progress through all the steps involved in getting data ready for modeling.  They describe best practices for acquiring data from numerous sources; explore key issues in data handling, including text/regular expressions, big data, parallel processing, merging, matching, and checking for duplicates; and outline highly efficient and reliable techniques for documenting data and recordkeeping, including audit trails, getting data back out of R, and more.

  • The only single-source guide to R data and its preparation, it describes best practices for acquiring, manipulating, cleaning, and maintaining data
  • Begins with the basics and walks readers through all the steps necessary to get data ready for the modeling process
  • Provides expert guidance on how to document the processes described so that they are reproducible
  • Written by seasoned professionals, it provides both introductory and advanced techniques
  • Features case studies with supporting data and R code, hosted on a companion website

A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R is a valuable working resource/bench manual for practitioners who collect and analyze data, lab scientists and research associates of all levels of experience, and graduate-level data mining students.



SAMUEL E. BUTTREY, PhD is an Associate Professor of Operations Research at the Naval Postgraduate School, Monterey, California, USA.

LYN R. WHITAKER, PhD is an Associate Professor of Operations Research at the Naval Postgraduate School, Monterey, California, USA.


The only how-to guide offering a unified, systemic approach to acquiring, cleaning, and managing data in R Every experienced practitioner knows that preparing data for modeling is a painstaking, time-consuming process. Adding to the difficulty is that most modelers learn the steps involved in cleaning and managing data piecemeal, often on the fly, or they develop their own ad hoc methods. This book helps simplify their task by providing a unified, systematic approach to acquiring, modeling, manipulating, cleaning, and maintaining data in R. Starting with the very basics, data scientists Samuel E. Buttrey and Lyn R. Whitaker walk readers through the entire process. From what data looks like and what it should look like, they progress through all the steps involved in getting data ready for modeling. They describe best practices for acquiring data from numerous sources; explore key issues in data handling, including text/regular expressions, big data, parallel processing, merging, matching, and checking for duplicates; and outline highly efficient and reliable techniques for documenting data and recordkeeping, including audit trails, getting data back out of R, and more. The only single-source guide to R data and its preparation, it describes best practices for acquiring, manipulating, cleaning, and maintaining data Begins with the basics and walks readers through all the steps necessary to get data ready for the modeling process Provides expert guidance on how to document the processes described so that they are reproducible Written by seasoned professionals, it provides both introductory and advanced techniques Features case studies with supporting data and R code, hosted on a companion website A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R is a valuable working resource/bench manual for practitioners who collect and analyze data, lab scientists and research associates of all levels of experience, and graduate-level data mining students.

SAMUEL E. BUTTREY, PhD is an Associate Professor of Operations Research at the Naval Postgraduate School, Monterey, California, USA. LYN R. WHITAKER, PhD is an Associate Professor of Operations Research at the Naval Postgraduate School, Monterey, California, USA.

Erscheint lt. Verlag 24.10.2017
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte acquiring data • acquiring data for modeling • advanced data mining • advanced data modeling techniques • assigning data • atomic data types • cleaning data • cleaning data for modeling • converting data • Data Analysis • data analysis in r • data cleaning tools • data collection • data handling tools • Data manipulation • Data Mining • data mining a-b-c's • Data Mining Statistics • Data Modeling • data modeling basics • data modeling case studies • data modeling for lab scientists • Datenanalyse • designating data • getting data into r • getting data out of r • handling character data • how to model data • matching data • merging data • preparing data for modeling • ready to model data • R (Programm) • r syntax basics • Statistical Software / R • Statistics • Statistik • Statistiksoftware / R • translating data into publishable form • Web Scraping
ISBN-10 1-119-08007-X / 111908007X
ISBN-13 978-1-119-08007-7 / 9781119080077
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55