Knot Invariants and Higher Representation Theory
Seiten
2017
American Mathematical Society (Verlag)
978-1-4704-2650-7 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-2650-7 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for $/mathfrak{sl}_2$ and $/mathfrak{sl}_3$ and by Mazorchuk-Stroppel and Sussan for $/mathfrak{sl}_n$.
The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is $/mathfrak{sl}_n$, the author shows that these categories agree with certain subcategories of parabolic category $/mathcal{O}$ for $/mathfrak{gl}_k$.
The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is $/mathfrak{sl}_n$, the author shows that these categories agree with certain subcategories of parabolic category $/mathcal{O}$ for $/mathfrak{gl}_k$.
Ben Webster, University of Virginia, Charlottesville, VA.
Introduction
Categorification of quantum groups
Cyclotomic quotients
The tensor product algebras
Standard modules
Braiding functors
Rigidity structures
Knot invariants
Comparison to category $/mathcal{O}$ and other knot homologies
Bibliography.
| Erscheinungsdatum | 05.11.2017 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 1-4704-2650-1 / 1470426501 |
| ISBN-13 | 978-1-4704-2650-7 / 9781470426507 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95