Rationality Problem for Algebraic Tori
Seiten
2017
American Mathematical Society (Verlag)
978-1-4704-2409-1 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-2409-1 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
The authors give the complete stably rational classification of algebraic tori of dimensions $4$ and $5$ over a field $k$. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank $4$ and $5$ is given.
The authors show that there exist exactly $487$ (resp. $7$, resp. $216$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $4$, and there exist exactly $3051$ (resp. $25$, resp. $3003$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $5$.
The authors make a procedure to compute a flabby resolution of a $G$-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a $G$-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby $G$-lattices of rank up to $6$ and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for $G$-lattices holds when the rank $/leq 4$, and fails when the rank is $5$.
The authors show that there exist exactly $487$ (resp. $7$, resp. $216$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $4$, and there exist exactly $3051$ (resp. $25$, resp. $3003$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $5$.
The authors make a procedure to compute a flabby resolution of a $G$-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a $G$-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby $G$-lattices of rank up to $6$ and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for $G$-lattices holds when the rank $/leq 4$, and fails when the rank is $5$.
Akinari Hoshi, Niigata University, Japan. Aiichi Yamasaki, Kyoto University, Japan.
Introduction
Preliminaries: Tate cohomology and flabby resolutions
CARAT ID of the $/mathbb{Z}$-classes in dimensions $5$ and $6$
Krull-Schmidt theorem fails for dimension $5$
GAP algorithms: the flabby class $[M_G]^{fl}$
Flabby and coflabby $G$-lattices
$H^1(G,[M_G]^{fl})=0$ for any Bravais group $G$ of dimension $n/leq 6$
Norm one tori
Tate cohomology: GAP computations
Proof of Theorem 1.27
Proof of Theorem 1.28
Proof of Theorem 12.3
Application of Theorem 12.3
Tables for the stably rational classification of algebraic $k$-tori of dimension $5$
Bibliography.
| Erscheinungsdatum | 12.08.2017 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 340 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 1-4704-2409-6 / 1470424096 |
| ISBN-13 | 978-1-4704-2409-1 / 9781470424091 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95