Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Algebra (Classic Version) - Michael Artin

Algebra (Classic Version)

(Autor)

Buch | Softcover
560 Seiten
2017 | 2nd edition
Pearson (Verlag)
978-0-13-468960-9 (ISBN)
CHF 219,60 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Appropriate for one- or two-semester algebra courses

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.

Algebra, 2nd Edition, by Michael Artin, provides comprehensive coverage at the level of an honors-undergraduate or introductory-graduate course. The second edition of this classic text incorporates twenty years of feedback plus the author's own teaching experience. This book discusses concrete topics of algebra in greater detail than others, preparing readers for the more abstract concepts; linear algebra is tightly integrated throughout.

Michael Artin received his A.B. from Princeton University in 1955, and his M.A. and Ph.D. from Harvard University in 1956 and 1960, respectively. He continued at Harvard as Benjamin Peirce Lecturer, 1960-63. He joined the MIT mathematics faculty in 1963, and was appointed Norbert Wiener Professor from 1988-93. Outside MIT, Artin served as President of the American Mathematical Society from 1990-92. He has received honorary doctorate degrees from the University of Antwerp and University of Hamburg. Professor Artin is an algebraic geometer, concentrating on non-commutative algebra. He has received many awards throughout his distinguished career, including the Undergraduate Teaching Prize and the Educational and Graduate Advising Award. He received the Leroy P. Steele Prize for Lifetime Achievement from the AMS. In 2005 he was honored with the Harvard Graduate School of Arts & Sciences Centennial Medal, for being "an architect of the modern approach to algebraic geometry." Professor Artin is a Member of the National Academy of Sciences, Fellow of the American Academy of Arts & Sciences, Fellow of the American Association for the Advancement of Science, and Fellow of the Society of Industrial and Applied Mathematics. He is a Foreign Member of the Royal Holland Society of Sciences, and Honorary Member of the Moscow Mathematical Society.

1. Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Determinants
1.5 Permutations
1.6 Other Formulas for the Determinant
1.7 Exercises

2. Groups
2.1 Laws of Composition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Integers
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Product Groups
2.12 Quotient Groups
2.13 Exercises

3. Vector Spaces
3.1 Subspaces of Rn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 Direct Sums
3.7 Infinite-Dimensional Spaces
3.8 Exercises

4. Linear Operators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and Diagonal Forms
4.7 Jordan Form
4.8 Exercises

5. Applications of Linear Operators
5.1 Orthogonal Matrices and Rotations
5.2 Using Continuity
5.3 Systems of Differential Equations
5.4 The Matrix Exponential
5.5 Exercises

6. Symmetry
6.1 Symmetry of Plane Figures
6.2 Isometries
6.3 Isometries of the Plane
6.4 Finite Groups of Orthogonal Operators on the Plane
6.5 Discrete Groups of Isometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representation
6.12 Finite Subgroups of the Rotation Group
6.13 Exercises

7. More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 r-groups
7.4 The Class Equation of the Icosahedral Group
7.5 Conjugation in the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups of Order 12
7.9 The Free Group

Erscheinungsdatum
Reihe/Serie Pearson Modern Classics for Advanced Mathematics Series
Verlagsort Upper Saddle River
Sprache englisch
Maße 177 x 233 mm
Gewicht 892 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-13-468960-7 / 0134689607
ISBN-13 978-0-13-468960-9 / 9780134689609
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung für Studienanfänger

von Gerd Fischer; Boris Springborn

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95