Descent Construction for GSpin Groups
American Mathematical Society (Verlag)
978-1-4704-1667-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
In this paper the authors provide an extension of the theory of descent of Ginzburg-Rallis-Soudry to the context of essentially self-dual representations, that is, representations which are isomorphic to the twist of their own contragredient by some Hecke character. The authors' theory supplements the recent work of Asgari-Shahidi on the functorial lift from (split and quasisplit forms of) $GSpin_{2n}$ to $GL_{2n}$.
Joseph Hundley, State University of New York at Buffalo, New York, USA. Eitan Sayag, Hebrew University of Jerusalem, Israel.
Introduction
Part 1. General matters: Some notions related to Langlands functoriality
Notation
The Spin groups $GSpin_{m}$ and their quasisplit forms
``Unipotent periods''
Part 2. Odd case: Notation and statement
Unramified correspondence
Eisenstein series I: Construction and main statements
Descent construction
Appendix I: Local results on Jacquet functors
Appendix II: Identities of unipotent periods
Part 3. Even case: Formulation of the main result in the even case
Notation
Unramified correspondence
Eisenstein series
Descent construction
Appendix III: Preparations for the proof of Theorem 15.0.12
Appendix IV: Proof of Theorem 15.0.12
Appendix V: Auxiliary results used to prove Theorem 15.0.12
Appendix VI: Local results on Jacquet functors
Appendix VII: Identities of unipotent periods
Bibliography.
| Erscheinungsdatum | 05.10.2016 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 210 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 1-4704-1667-0 / 1470416670 |
| ISBN-13 | 978-1-4704-1667-6 / 9781470416676 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich