Irreducible Geometric Subgroups of Classical Algebraic Groups
Seiten
2016
American Mathematical Society (Verlag)
978-1-4704-1494-8 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-1494-8 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Let $G$ be a simple classical algebraic group over an algebraically closed field $K$ of characteristic $p /ge 0$ with natural module $W$. Let $H$ be a closed subgroup of $G$ and let $V$ be a non-trivial irreducible tensor-indecomposable $p$-restricted rational $KG$-module such that the restriction of $V$ to $H$ is irreducible. In this paper the authors classify the triples $(G,H,V)$ of this form.
Let $G$ be a simple classical algebraic group over an algebraically closed field $K$ of characteristic $p /ge 0$ with natural module $W$. Let $H$ be a closed subgroup of $G$ and let $V$ be a non-trivial irreducible tensor-indecomposable $p$-restricted rational $KG$-module such that the restriction of $V$ to $H$ is irreducible. In this paper the authors classify the triples $(G,H,V)$ of this form, where $H$ is a disconnected maximal positive-dimensional closed subgroup of $G$ preserving a natural geometric structure on $W$.
Let $G$ be a simple classical algebraic group over an algebraically closed field $K$ of characteristic $p /ge 0$ with natural module $W$. Let $H$ be a closed subgroup of $G$ and let $V$ be a non-trivial irreducible tensor-indecomposable $p$-restricted rational $KG$-module such that the restriction of $V$ to $H$ is irreducible. In this paper the authors classify the triples $(G,H,V)$ of this form, where $H$ is a disconnected maximal positive-dimensional closed subgroup of $G$ preserving a natural geometric structure on $W$.
Timothy Burness, University of Bristol, United Kingdom. Soumaia Ghandour, Lebanese University, Nabatieh, Lebanon. Donna M. Testerman, Ecole Polytechnique Federale de Lausanne, Switzerland.
Introduction
Preliminaries
The $/mathcal{C}_1, /mathcal{C}_3$ and $/mathcal{C}_6$ collections
Imprimitive subgroups
Tensor product subgroups, I
Tensor product subgroups, II
Bibliography
| Erscheinungsdatum | 01.03.2016 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 163 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 1-4704-1494-5 / 1470414945 |
| ISBN-13 | 978-1-4704-1494-8 / 9781470414948 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95